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1 INTRODUCTION 

The purpose of the Generic Safety Issue (GSI) -191 research program sponsored by 

the U.S. Nuclear Regulatory Commission (NRC) was to determine if the formation, 

transport and accumulation of debris in a containment building following a loss-of-

coolant accident (LOCA) could impede the operation of the emergency-core-cooling 

system (ECCS) in pressurized-water reactors (PWRs). The definition of “debris” was 

incrementally expanded over the course of the program to include not only thermal 

insulation damaged by direct jet impingement from a broken pipe, but also the latent dust 

and dirt that may be present in containment, and most recently, any adverse chemical 

products that might arise from the unique combination of spray additives, structural 

materials, and damaged insulation and coatings that will be present in the post-LOCA 

accident environment. The Integrated Chemical Effects Test (ICET
1
) program was 

initiated by the NRC and conducted at the University of New Mexico (UNM) under the 

direction of Los Alamos National Laboratory (LANL) to study the possible formation of 

chemical products in prototypical containment conditions (Refs. 3, 5-8). 

One primary objective of the ICET program was to identify the formation in a 

representative post-LOCA accident environment of any chemical products that might 

adversely affect the flow of water through the recirculation sump screen and lead to 

larger hydraulic pressure drops (head losses).  A small-scale chemical effects study (Ref. 

17) had previously demonstrated that chemical products associated with the corrosion of 

structural metals in representative containment-chemistry solutions can induce large 

pressure drops when deposited on fiberglass insulation debris, but no attempt was made 

to demonstrate that these products form naturally as part of the long-term chemical 

environment in the containment pool. Subsequently, the ICET series determined that a 

number of chemical products can be formed in a realistic containment environment over 

a 30-day period and that these products can be deposited on and within mats of fiberglass 

debris, but conversely, no attempt was made to characterize the potential head-loss 

characteristics of these products. 

South Texas Project Nuclear Operating Company (STP) has recently initiated the 

Chemical Head Loss Effects (CHLE
2
) test series (Ref. 44) at UNM to examine site 

specific chemical product formation and to characterize composition, quantity, and 

morphology of any identified products for the purpose of supporting a chemical head-loss 

testing study. STP utilizes almost 100% fiberglass insulation to improve thermal 

efficiency within the plant. Latent (permanently resident) debris can contribute a small 

amount of additional fiber as well as dust and dirt particulates. The dominant particulate 

type at STP is from unqualified coatings materials that are presumed to suffer complete 

mechanical degradation. Because STP maximum strainer approach velocities under 

ECCS recirculation are very low (~0.009 ft/s), the NRC has questioned the use of 

traditional head-loss correlations (Ref. 43) that relate debris-bed composition and 

thickness to pressure drop. STP has planned additional tests to study debris accumulation 

and penetration through a prototypical sump-strainer module. Also, a relatively new 

                                                 
1
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surrogate-debris preparation method (Ref. 45) is being used to separate fiberglass 

insulation; debris preparation has long been recognized as an important influence on 

head-loss behavior. 

STP is planning a vertical loop head-loss test program to investigate the combined 

effects of (1) low bed-formation and approach velocities, (2) new fiber preparation 

methods, (3) high particulate-to-fiber ratios, and (4) chemical product formation. These 

tests will support either (a) validation of the 6224 correlation for STP conditions, (b) 

refinement of traditional correlations in the form of tailored fitting parameters, or (c) 

development of new correlations that address recognized deficiencies for treating 

hydraulic compression and compaction in mixed debris beds with inhomogenous 

composition profiles. 

This report reviews the theoretical construction of traditional head-loss correlations, 

and expands the mathematical treatment to accommodate inhomogeneous composition 

profiles. The primary focus of this treatise is pressure gradients through a fixed thickness 

of a one-dimensional, inhomogeneous bed of mixed composition. 

1.1 Background 

In the event of a LOCA within a PWR containment, thermal insulation and other 

materials (e.g., coatings and concrete) in the vicinity of the break would be damaged, and 

a fraction of the debris that was formed would be transported to the emergency 

recirculation sump. The subject of high-pressure debris generation and waterborne 

transport has been studied extensively as part of safety analysis activities for both the 

U.S. BWR and PWR plant populations (Refs. 1, 35, 43). For four-loop plant 

configurations primarily insulated with fiberglass, debris volumes may exceed 2000 ft
3
 

for a large-break LOCA. Part of the debris reaching the sump screen would accumulate 

on the face, and part of the debris would pass through. Debris accumulating on the screen 

can form a bed that acts as a filter capable of removing particulate matter from the 

circulating water, thus increasing the pressure drop, or “head loss,” across the screen. 

Excessive head loss may prevent or impede the flow of water to the ECCS and to the 

containment spray system, potentially degrading system performance or causing pump 

damage. 

Containment spray systems are typically actuated for large and medium-break 

LOCAs and also for some small-break scenarios. Containment spray systems have 

several purposes. The most immediate function is rapidly condensing the steam that 

would be released to the containment atmosphere to protect the structural integrity of the 

containment building from overpressurization. Spray systems also scavenge gaseous 

fission products such as radioactive iodine that might be released from damaged fuel 

elements and sequester these products in solution to minimize their long-term release to 

the environment. Finally, spray systems deliver and/or distribute chemical additives that 

prevent the pH of the containment pool from becoming acidic. Acidic environments 

greatly accelerate corrosion processes for many structural metals and reduce the 

solubility of iodine in solution. Reactor coolant water issuing from a broken pipe would 
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be slightly acidic from the addition of boric acid, which serves as a burnable neutron 

poison, and radiolysis of water would produce hydrogen ions that lower pH, so chemical 

additives are necessary to prevent long-term acidification of the recirculation pool. 

Three basic chemical additive systems are presently in service across the nuclear 

utility industry:  (1) injection of concentrated sodium-hydroxide solution with the spray 

water, (2) dissolution of dry trisodium phosphate stored in baskets on the containment 

floor, and (3) melting of ice columns containing concentrated sodium tetraborate. The 

phosphate system has a target pH of approximately 7.0 for a well-mixed pool, and the 

sodium systems have a target pH of between 9.0 and 10.5; however, local pH values can 

be much higher before the additives are thoroughly mixed in the entire recirculation 

volume. STP utilizes option 2, dissolution of dry trisodium phosphate. 

Although pH control is designed to prevent chemical attack on structural materials, 

there is growing evidence of unintended detrimental effects of these chemicals with 

regard to recirculation-sump operability. First, it is well known that high-pH, high-

temperature environments enhance the corrosion of aluminum. For this reason, nuclear 

power plants control their containment inventory of exposed aluminum surfaces and are 

designed to prevent a catastrophic deflagration of hydrogen gas that can accumulate as a 

byproduct of aluminum oxidation. It is also known that various species of aluminum 

hydroxide can form amorphous, gelatinous suspensions that could pose severe head-loss 

consequences if accumulated on a fibrous debris bed. Concerns over potential adverse 

chemical effects in the containment environment were initially substantiated by a 

somewhat qualitative description of gelatinous material recovered from the containment 

sump at Three Mile Island many months after the accident. The ICET test program 

confirmed the plausible formation of at least two reaction products that may exacerbate 

sump-screen head loss. 

The dominant potential product formation mechanism at STP is postulated to be 

corrosion of submerged aluminum with subsequent formation of aluminum oxy-

hydroxide. Two chemical forms pose possible concerns: (1) nucleation and crystalline 

growth directly on fiber-glass debris strands, and (2) precipitation of an amorphous 

compound in the bulk solution with subsequent migration to the debris bed. 

As part of the GSI-191 research program, the ICET series investigated the potential 

for chemical interactions between the cooling water and exposed materials within the 

containment structure. To simulate these potential interactions, structural materials and 

solution compositions determined to coexist within a post-LOCA containment 

environment were placed into a 250-gal. stainless steel (SS) tank and allowed to interact 

for thirty days under constant observation. The proportion of sample materials exposed to 

the solution and suspended above the solution was properly scaled to the volume of water 

to preserve representative ratios of corrosion surface and dilution volume that may be 

present in PWR containment buildings. All five tests performed within the ICET series 

used the set of exposed sample materials itemized in Table 1-1. All five tests maintained 

a constant temperature of 60ºC±2ºC at atmospheric pressure with the same baseline 

reactor-coolant chemistry, but the simulated insulation debris and the pH control system 

varied as defined in Table 1-2. 
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CHLE tests focus on STP conditions similar to ICET #2 except that material 

inventories have been adjusted to be plant specific and temperature is now controlled to 

emulate a post-LOCA cooling history. CHLE uses the same 250-gal. tank that was 

constructed for ICET, but three additional flow circuits have been added to accommodate 

the introduction of replicate fiberglass debris mats. A heat exchanger is also included to 

emulate the temperature cycle experienced in the plant as water moves from the 

containment pool through residual heat removal (RHR) and through the hot reactor core 

(Ref. 44). 

 

Figure 1-1. CHLE test apparatus showing chemical corrosion tank (left) and 3 

parallel circulation columns (right). All components are wrapped in thermal 

insulation. 
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Table 1-1. Material-Quantity/Sump-Water-Volume Ratios for the ICET Tests 

Material Ratio (ratio units) 

Zinc in Galvanized Steel 8.0 (ft
2
/ft

3
) 

Inorganic Zinc Primer Coating 

(non–top coated) 
4.6 (ft

2
/ft

3
) 

Inorganic Zinc Primer Coating (top coated) 0.0 (ft
2
/ft

3
) 

Aluminum 3.5 (ft
2
/ft

3
) 

Copper (including Cu-Ni alloys) 6.0 (ft
2
/ft

3
) 

Carbon Steel 0.15 (ft
2
/ft

3
) 

Concrete (surface) 0.045 (ft
2
/ft

3
) 

Concrete (particulate) 0.0014 (lbm/ft
3
) 

Insulation Material 

(fiberglass or calcium silicate) 
0.137 (ft

3
/ft

3
) 

 

 

Table 1-2. Experimental Conditions in the ICET Tests
1,2

 

 

Test 

# 

Boron
3
 

added 

(mg/L) 

NaOH 

added 

(mg/L) 

TSP
4
 

added 

(mg/L) 

 

Test pH 

range 

pH 

buffering 

agent
5
 

Insulation Debris 

Volume
6 

Fiberglass Calcium 

Silicate 

1 2,800 7,677 - 9.3 – 9.5 borate 100% - 

2 2,800 - 4,000 7.1 – 7.4 phosphate 100% - 

3 2,800 - 4,000 7.3 – 8.1 phosphate 20% 80% 

4 2,800 9,600 - 9.5 – 9.9 borate 20% 80% 

5 2,400 - - 8.2 – 8.5 borate 100% - 

Notes: 

1. Temperature was maintained at 60°C ± 3°C in all tests. 

2. The following chemicals were also added to the solution:  LiOH = 0.7 mg/L and HCl 

= 100 mg/L in Tests #1 through #4.  LiOH = 0.3 mg/L and HCl = 42.8 mg/L in Test 

#5. Also, 63.7 g of latent debris and 21.21 g of concrete dust were added to the 

mixture prior to each test initiation. 

3. The required boron concentration of 2,800 mg/L was added as 16,000 mg/L H3BO3 

in Tests #1 through #4.  To attain the required boron concentration of 2,400 mg/L for 

Test #5, 18,500 mg/L of Na2B4O7·10H2O (sodium tetraborate) in 143 gal. of water 

was added to 16,000 mg/L of H3BO3 in 107 gal. of water. 

4. Trisodium Phosphate (TSP) = Na3PO4·12H2O. 

5. While other additives establish system pH on a wide scale, the buffering agent keeps 

pH relatively stable by resisting minor fluctuations from its pKa. 

6. All tests consisted of 0.137 cubic feet of insulation represented per cubic foot of 

water. For each test, the insulation was present as fiberglass and/or calcium silicate 

material with the proportion of volume shown in the table. 
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2 THEORY DEVELOPMENT 

One recurring complication of testing fibrous debris beds that have been associated 

with ECCS sump blockage is an observed decrease in bed thickness under flowing 

conditions. For convenience and clarity of discussion, reduced bed thickness will be 

attributed to two basic mechanisms: (1) relatively rapid compression and (2) more 

gradual compaction. The term “compression” is used here to refer specifically to a 

change in bed thickness caused by mechanical transmission of forces between debris 

elements that are locked in a physical arrangement of linkage points.  In the case of 

fiberglass, loads induced by hydraulic resistance can be supported by internal tensile 

properties of the fibers.  When the load is released under pure compressive conditions, 

bed thickness is fully recovered in the manner of a spring returning to its uncompressed 

length. 

“Compaction,” by contrast, will be used to describe a collection of processes that 

lead to irrecoverable decreases in bed thickness. These processes include migration of 

particulates to achieve higher packing ratios, rotation of fiber flocks to fill internal voids, 

slippage of fiber contact points, breakage of fibers under excessive tensile stress, etc. 

Compaction always involves relative movement between debris elements and, in general, 

refers to mechanisms that relax or dissipate internal stresses caused by water flowing 

through the bed. A simple analogy of a possibly common compaction mechanism in 

fiberglass is provided by the following mental experiment. Stand a common paperclip on 

edge under the pressure of your finger and exercise the tensile spring by pushing hard 

enough to cause elastic deformation (flex). If the paperclip rotates or slips under 

nonequilibrium forces and lies flat, the opportunity for tensile recovery is lost and a 

significant thickness reduction has occurred. Compaction processes continue until the 

equilibrium static load imposed on a debris element under contact with its neighbors 

exceeds local drag forces available to induce motion. One final distinction is that 

compaction processes can continue reducing bed thickness after all tensile recovery 

potential has been dissipated. 

One objective of the STP vertical head-loss study will be to compare, and to quantify 

where possible, the hydraulic resistance properties of various chemical products that may 

be identified in the CHLE test program. These products may either form directly on the 

fiberglass mat or they may precipitate from bulk solution and migrate to the debris bed. 

Bed-thickness reduction complicates the task of characterizing chemical head loss by 

amplifying in a positive feedback loop pressure losses that are initiated by the inherent 

resistance of the debris elements; initial compression and compaction leads to greater 

hydraulic resistance, and hence, to greater thickness reductions, etc. Thickness reduction 

is initially resisted by the inherent tensile properties of long fibers present in the bed, and 

it is ultimately limited by the solid density of the debris material. Thus, the physical 

configuration of the bed can evolve under continuous flow in a manner that is difficult to 

quantify, and these changes introduce uncertainties into any analysis of corresponding 

pressure-loss data. 



 

7 

 

Relationships between local debris-bed density and hydraulic resistance are 

developed in Section 2.1 to provide a means of expressing internally distributed hydraulic 

forces in terms of measurable variables like the bulk approach velocity and unknown 

properties of the debris like the specific surface area (material area divided by material 

volume). This detailed approach supports development of a coupled head-loss correlation 

that properly accounts for bed compression and compaction under flow. Rigorous 

derivations of hydraulic gradient may also help identify the degree of approximation 

inherent to standard head-loss correlations, even if the assumption of homogeneity is 

adopted later for practical reasons. 

2.1 Flow Through Porous Media 

Fundamental arguments based on momentum transfer and viscous shear are 

reviewed in this section to explain the origin of the classic porous medium head-loss 

equations developed by Davies and Ergun (Refs. 10 and 12). This careful treatment will 

help enumerate assumptions that have become implicit over many years of use and 

correct some misconceptions that have crept into the vernacular of porous media flow 

prediction. Several refinements to the standard methods are also explored that may 

warrant comparisons with experimental data for problematic debris types such as calcium 

silicate particulates, gelatinous chemical deposits, and stratified layers of paint chips. 

Several definitions of area are used throughout this section. They are itemized here 

to provide both an advance warning and a convenient reference: 

 AA  far-field approach area defined by the outer dimensions of the 

clean filter extending perpendicular to the flow direction, 

 SA  geometric area of clean screen without consideration of open 

fraction, 

 CA   circumferential area of a fully loaded convoluted strainer design, 

  A z   interstitial flow area existing at any horizontal plane in a 1-D bed, 

 MA   physical area of a mesh or perforated plate that obstructs flow, 

  VS z       local specific surface area of debris    2 3 1m m m  defined as        

the debris surface area per unit of solid debris volume. 

 

2.1.1 Derivation of Pressure Gradient Formulas 

Practical concerns regarding debris blockage center around the total pressure 

difference occurring across opposing sides of the bed. However, the internal processes of 

compression and compaction are driven by internal distributions of hydraulic force, the 

computation of which requires an expression of the pressure gradient within the bed. 

Pressure gradient formulas are developed in this section based on classical descriptions of 

momentum flux, gravitational body force and boundary layer shear stress. Pressure 

gradient contributions from inertial drag are presented in Section 2.1.3. 
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2.1.1.1 Momentum Flux Within a Control Volume 

The first section to follow introduces the geometry and bed-morphology assumptions 

that will be used throughout this development (Section 2.1.1.1.1). Proceeding sections 

introduce the momentum equation as a governing principle with a derivation of 

momentum efflux from a control volume (Section 2.1.1.1.2), offer an optional discussion 

of vertical-flow probability distributions to partially compensate for the limitations of a 

one-dimensional velocity distribution (Section 2.1.1.1.3), and describe the expansion of 

depth dependencies that will motivate spatial descriptions of debris-bed structure (Section 

2.1.1.1.4). 

2.1.1.1.1 Geometry and Background Assumptions 

Figure 2-1a illustrates water approaching a composite debris bed with a flow velocity 

of /A Aw Q A  where Q  is a constant volumetric flow rate and AA  is the total approach 

area. For prototypical flat sump screens, AA  is generally assumed to be equal to the total 

geometric area of the screen SA  without regard to the actual open area of the mesh or 

perforated plate. The geometric screen area is determined by the largest outer dimensions 

of the screen and is reduced to account for any flow area blocked by structural bracing. 

For complex convoluted screens that gradually fill with debris, the approach area can 

gradually transition from SA  to the outer circumscribed area of the entire three-

dimensional strainer CA ; circumscribed area can depend on the thickness of the debris and 

on any preferential loading pattern that may occur. In combination with the volumetric 

flow rate, AA  sets the entrance velocity boundary condition by defining the face area 

presented by the bed to the flow. 

The strainer exit velocity Ew  is determined by the local interstitial flow area of the 

debris bed next to the strainer  LA  minus the portion of area A  obstructed by the screen 

that is not also covered by debris. Since SA A  is the fraction of open area in the debris 

next to the screen,  M SA A A  is the additional flow area obstructed by a mesh of total 

area MA . The exit velocity is then   
1

1E M Sw Q A A A


   where the interstitial flow 

area A  is evaluated at the bottom of the bed at z L . In a typical test configuration 

where water passes vertically downward through a debris bed supported within a 

cylindrical pipe, mass conservation requires that the bulk water velocity quickly return 

to Aw . 

Throughout this development it is assumed that the volumetric flow rate Q  is 

constant. Each emergency-core-cooling-system (ECCS) recirculation pump is rated to 

provide at least a minimum required design flow when supplied with a minimum required 

net positive suction head (NPSHR) at the centerline of the pump bore. This means that a 

minimum fluid pressure must exist at the entrance to the pump to ensure proper 

performance and to avoid complications like cavitation and air ingestion. The actual flow 

rate of a pump depends on its mechanical performance characteristics, which vary as a 
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function of both the inlet and the outlet pressure conditions. These conditions change 

during the course of a postulated accident sequence, so the exact flow rates will also 

change. The net positive suction head available (NPSHA) to feed a pump can depend on 

many factors including the elevation difference between the floor of containment and the 

pump inlet; the depth of water in the containment pool; the length, complexity, and 

manufacture of supply piping from the sump to the recirculation pump; the overpressure  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1. Geometry of flow through a one-dimensional porous medium: (a) 

bulk approach and exit velocities, (b) cylindrical differential 

volume element, (c) internal velocity vectors penetrating a 

control system of fluid (dashed boundary). 

that exists in the containment building; and various attributes of the clean strainer design 

like its fabrication of mesh or perforated plate, whether or not the strainer is fully 

submerged in water, and its geometry within the recirculation pool. The difference 

between available suction head and required suction head is defined as the net positive 

suction head margin (NPSHM), and the presence of debris on the sump screen can erode 

this margin to the point of pump failure. Thus, the actual flow rate that is pulled through a 

debris bed is coupled to the pressure drop experienced across the bed through the 

mechanical response of the pump. However, for the purpose of debris-bed head-loss 

prediction, it is sufficient to assume a constant instantaneous flow rate and to relegate 

feedback mechanisms to a system-wide vulnerability assessment.
1
 

Consider now the microscopic characteristics of flow through a porous medium and, 

following the formalism presented in Ref (13), define a “system” of water passing 

through a differential annular volume of debris in a one-dimensional composite bed as 

                                                 
1
 The various components of net positive suction head have specific regulatory definitions delineated in 

Regulatory Guide 1.82 (Ref. 36) that may differ slightly from the operational descriptions discussed here. 

ŷ

 

x̂  

ẑ  

z  

L 

(a)  

dz 

z 
z  

(c)  

z  
dr 

r 

(b)  

wE  

wA  
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shown in Figure 2-1b. The system of interest comprises the water within the debris 

volume at the instant in time that is illustrated. At this instant, the water occupies a 

control volume (CV) defined by the dashed boundary in Figure 2-1c. The system of water 

will continue to pass through the CV immediately thereafter, but the CV is stationary. 

Again, note that the CV includes only fluid in the interstitial space within the differential 

volume and not the debris material forming the porous medium. Debris obstructions 

represent surface areas where viscous shear dissipates energy and imparts drag forces on 

the CV. A debris bed can be treated as one dimensional if the composition, morphology, 

and internal velocity profiles vary only from top to bottom and not from side to side. This 

condition generally holds when the thickness of a contiguous bed is small compared to its 

lateral extent so that edge effects can be ignored, but obviously, there exists a spatial 

scale small enough that three-dimensional flow patterns around the debris elements 

become important. 

It will also be required that debris elements have random orientations that create 

azimuthally isotropic internal velocity fields, at least on a scale greater than a few particle 

or fiber diameters. This condition implies that there is no preferred lateral flow direction. 

As the fluid penetrates through the medium, all possible side-to-side deflections are 

equally likely, and no net lateral forces are exerted on the bed as a whole that would 

induce motion if the bed were not restrained by a rigid outer structure. (Small-scale 

lateral force imbalance may continue to induce bed reconfiguration and particulate 

migration, however). For randomly oriented debris, it is generally understood that a one-

dimensional bed will have an azimuthally isotropic velocity field regardless of what entry 

point is chosen as a reference. A careful treatment is only needed for regular arrays of 

flow obstacles such as vanes and lattices that are designed to divert flow in specific 

directions. Even relatively well-ordered layers of paint chips would not be expected to 

introduce preferred lateral directions to the flow. 

2.1.1.1.2 Derivation of Internal Forces 

The sum of all directed body and surface forces acting on the fluid system shown in 

Figure 2-1 equals the net force imparted by changes in linear momentum p  as defined by 

Newton’s Second Law such that 

Body Surface Momentum

System

dp
F F F F

dt


    


 .                 (1) 

 

Because the moving fluid system and the stationary CV are coincident at the instant 

illustrated in the figure, the resultant forces acting on the system are the same as those 

acting on the CV. 

 

The general relationship between changes of momentum in the system and changes 

of momentum within the control volume is given by 
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 ˆ
System CV CS

dp dt V d V V dA
t

 


  
                  (2) 

 

where  ˆ,V V r   represents the interstitial fluid velocity vector carrying a magnitude 

V at spatial position r  in the angular direction ̂
1
. The incompressible water density   

depends on temperature but is assumed to be constant throughout the bed, and the first 

and second terms of the above relation represent integrals over the entire control volume 

(CV) and control surface (CS) of that volume, respectively. Again, A  represents the 

interstitial flow area at the faces of the CV, which has differential elements ˆdA  directed 

outward along local, surface-normal, unit vectors. For the moment, A  implicitly 

represents the local porosity of a bed at any depth z , but the porosity can be introduced  

explicitly as a ratio of the interstitial area to the geometric approach area at the same 

depth, i.e., porosity      Az A z A z  . Generally, the flow path circumscribing the bed 

will have a constant cross section so that  A AA z A . 

Equations (1)  and (2)  can be equated to yield the momentum-force equation for an 

arbitrary CV. Under steady-state flow conditions there are no time variations of velocity 

within the bed, so the simplified result is 

ˆ
Momentum Body Surface

CS
F F F V V dA    .                    (3) 

 

Equation (3) states that the sum of all forces acting on a CV is equal to the net rate of 

linear momentum efflux. The associated surface integral will be referred to as the 

momentum force MomentumF  throughout this section. In an azimuthally isotropic velocity 

field, fluid exiting the sides of the annular volume shown in Figure 2-1b will be balanced 

by fluid entering those faces. Thus, there will be no net momentum exchange from the 

sides and only one equation of motion is needed to describe fluid flow along the 

z direction. No fluid will cross the internal boundaries of the control surface where flow 

must be tangent to the surface of the debris elements, so only the top and bottom of the 

annular volume need to be treated rigorously in order to evaluate the surface integral. 

While bulk flow moves through a debris bed in a predominantly vertical direction, 

obstacles divert water and impart lateral velocity components to the field. In return, these 

local perturbations in momentum exert hydraulic forces on the debris elements. Along 

any streamline crossing the upper or lower boundary of the annular CV, 

ˆ ˆ cosV dA V dA    where   is the angle between the outward surface normal and the 

local velocity vector. (Note that ˆ 1dA    by definition). It is reasonable to assume that the 

velocity magnitude and the diversion angle are related by location relative to the debris 

surface, so the two cannot be decoupled without introducing some approximation. 

                                                 
1
A fluid velocity field takes a single discrete direction at each spatial location, unlike a radiation field which 

is generally distributed in all directions, all energies, and distributed in the volume about each spatial point. 
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However, they will be treated as independent factors in this development. Flow diversion 

induces a distribution of   within the available flow area that is peaked near   on the 

entrance face and peaked near 0  on the exit face; and, one might expect that the volume-

averaged magnitude of lateral velocity components will increase with decreasing porosity 

 . Regardless of deflections in the fluid velocity, lateral homogeneity and mass 

continuity require that the volumetric flow rate, when suitably averaged over local 

perturbations, must be constant at every depth in the bed. Thus, the velocity field must 

accelerate or decelerate to accommodate the constraint that ˆV k dA Q   for surface 

integration over any horizontal plane intersecting the bed at arbitrary depth z . The unit 

vector k̂  defines the positive direction of the z  coordinate. 

The scalar product of velocity and directed surface area in Eq. (3) defines the 

volumetric flow rate across the surface element, the factor   converts the product to 

mass flow rate, and the additional factor of V  converts the product to force and reassigns 

the flow direction to ensure appropriate vector summation through the process of 

integration. If the velocity field is azimuthally isotropic over a spatial scale comparable in 

size to several adjacent debris elements, then there is no net momentum transfer 

perpendicular to the bulk flow and Eq. (3) can be reduced to a summation of vertical 

force components only. It follows that   ˆ ˆˆ ˆ
CS CS

V V dA V k V dA k      . 

Comparison of the four cases for flow vectors entering and exiting the top and 

bottom surfaces of the CV shows that the two factors in the above integral have the same 

sign for the bottom surface ( ˆdA  and k̂  coincident) and opposite sign for the top surface 

( ˆdA  and k̂  opposed). Thus, the assumption of azimuthal symmetry for a one-

dimensional bed, which also must hold at every depth z , can be enforced by expressing 

Eq. (3) as  

2 2 2 2cos cosMomentum
bot top

F V dA V dA    
               (4) 

 

where   is the angle between the velocity vector and the positive z  coordinate (i.e., the 

polar direction angle) and the equation is understood to describe vertical force 

components only. Because the signs of each term are now explicit, orientation of the 

differential surface elements is no longer required. For continuous bulk flow through a 

bed it should be expected that 0 2   , which simply means there is no reverse flow. 

Possible effects of lateral flow diversion on momentum changes in the fluid are 

traditionally neglected from Eq. (4) based on arguments that (1) fibrous beds are very 

porous  90%   so the spatially averaged deflection angle at any horizontal cross 

section will be small, (2) the cosine is insensitive to small changes in the argument near 

0  and  , (3) primary interest is usually focused on the total pressure difference across a 

debris bed between pressure transducers placed in a constant-volumetric-flow system 

where the upstream and downstream velocity fields are designed to be identical so that 
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net 0MomentumF  , and (4) high-resolution velocity information needed to carefully 

quantify interstitial fluid-momentum variations is not usually available. For highly 

compact particulate beds, potentially deformable gelatinous deposits, and regular 

orientations of paint chips this approximation may not be appropriate. As an extreme 

illustration of the possible effects of debris morphology, consider that a bed of platelets 

aligned perpendicular to the bulk flow direction will impart a much greater deflection 

than the same platelets aligned parallel to the flow even if the two configurations have the 

same bulk porosity.  

2.1.1.1.3 Vertical Flow Probability Distributions 

Fine details in the interstitial velocity field are needed to determine the degree of 

lateral flow deflection present at any point within the bed. In this section is presented a 

strategy for parameterizing these details into a single geometry coefficient,  . However, 

high-resolution velocity fields are seldom available for engineering applications, so the 

full explanation of the statistical averaging process can be omitted without loss of 

continuity. It will be sufficient for most readers to understand that   represents a 

correction factor that accounts for the presence of nonvertical velocity components and to 

continue with Section 2.1.1.1.4. The traditional treatment of the momentum force surface 

integral can always be recovered by setting 1  . 

One means of alleviating the apparent contradiction between the simplification of 

lateral homogeneity needed for one-dimensional bed behavior and the physical 

occurrence of local velocity perturbations around debris elements is to collapse all 

angular velocities observed within a finite thickness centered on a horizontal plane into a 

joint probability distribution defined on the ranges of both velocity magnitude and lateral 

deflection angle that preserves the spatially averaged behavior of the field. The thickness 

z  of spatial averaging required to define this distribution should not exceed the size of 

several adjacent debris elements as suggested in Figure 2-1c. As a practical consideration, 

lateral homogeneity of the bed limits the required lateral range similarly so that the 

distribution of angular velocity can be compiled over any unit cell of representative 

spatial complexity. The size of the required representative cell may vary depending on 

the bed composition and morphology. 

Of course, computation of a velocity probability distribution would require complete 

knowledge of the velocity-vector field  ˆ,V r   defined at all spatial locations r  and 

angular directions ̂  within a debris bed having a very specific configuration. This 

complication will be accepted for the moment in favor of the notational convenience and 

the generality offered by the concept of a probability distribution for investigating the 

effects of debris-bed morphology on internally distributed hydraulic forces. The 

formalism may also help to suggest convenient scaling rules and appropriate 

parameterizations for the application of empirical data. It is possible that computational 

fluid dynamics (CFD) models may be applied to obtain velocity fields for idealized and 

prototypical debris configurations, or alternatively, that analytic solutions for external 
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flow over regularly shaped objects may be superimposed to approximate the internal 

velocity field. Even generic exercises of this nature may help to quantify the possible 

magnitude of momentum transfer that is imposed on the angular velocity distribution by a 

specific debris combination. 

Here, bed morphology will be denoted by the state vector  , which includes such 

attributes of the debris elements as local spacing (porosity), size distributions, aspect 

ratios, spatial arrangement, surface complexity, etc. To illustrate the diversity of possible 

debris configurations, compare the features of (1) a sand bed composed of random, 

semispherical, discrete grains; (2) a bed of paint chips composed of regular, stratified 

layers of platelets; (3) a bed of loosely compacted fibers whose elements have extremely 

large aspect ratios, infrequent points of contact, and significant tensile properties; and (4) 

gelatinous chemical deposits within a fiber network that may deform, vibrate, or 

agglomerate under flow. In traditional treatments of flow through porous media, the 

effects that these differences introduce to hydraulic losses are often captured by applying 

empirical correction factors to basic formulas that were derived under simplified flow 

conditions. In this development, theoretical correction factors will be introduced 

explicitly to help direct the most effective application of empirical evidence 

To render more tractable the problem of defining a probability function that 

describes the spatially averaged distribution of velocity magnitude and deflection angle, 

consider only variations in the vertical velocity component cosw V   across an 

arbitrary horizontal slice of the debris bed. Any inherent dependence between speed and 

direction has now been combined into a single metric related to volumetric flux. (In some 

cases, it might be determined that this metric alone is adequate to describe the unique 

characteristics of a given debris bed). The vertical velocity component is a simple scalar 

field that can be generically illustrated as a function of location on the plane as shown in 

Figure 2-2. Now, the task of defining a probability distribution for the flow field reduces 

to a procedure for answering the question, what portion of interstitial area on the plane is 

crossed by fluid having a vertical velocity component w ? The exercise of computing 

relative areas each associated with a range of velocities will permit the collapse of two-

dimensional flow variations onto a single spatial point that represents the angular 

complexity of the one-dimensional velocity field. 

 

 

Stated more formally, the present objective is to find a function  g w  that is 

distributed per unit velocity such that  g w dw  is the probability of a streamline crossing 

the plane in the vertical velocity range dw  about w . All fluid crossing the plane must 

have a finite vertical velocity, so as expected for a probability distribution, the following 

normalization must hold  
0

1g w dw


 . Figure 2-2 suggests that the probability of 

crossing the plane with a given velocity w  can be approximated numerically by 
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computing the contour area that lies between two values of the velocity field and dividing 

by the total interstitial area across the plane. For the example shown, 

   P w A A g w w    , so the desired probability density is approximated as 

   g w A A w   . 

Figure 2-2. Schematic function of the vertical velocity component that might 

exist across any horizontal plane intersecting the debris bed. 

The increments labeled in Figure 2-2 can also be interpreted as differential intervals, 

which suggests a continuum definition for the probability distribution. Consider a facet of 

area on the scalar velocity function as shown in Figure 2-2. The magnitude of the local 

gradient ˆ ˆw w
w i j

x y

 
  

 
 provides the relationship between a differential interval of 

velocity and the distance between two contours projected in the plane, i.e. the slope 

(rise/run) such that w dw dt   where t  is the planar length of the projected gradient 

direction. The facet has a projected area of dt dl  that can be integrated around the 

contour to yield the differential area centered about the contour dA dt dl   where the 

circle denotes a closed integration path. By analogy with the discrete approximation 

given above and substitution of dt  through the definition of the slope, an expression for 

the desired probability function can be found,  
1

1g w A w dl


  . Thus, the value of 

the probability function for a given velocity can be computed by integrating the 

reciprocal of the velocity gradient magnitude around the locus of points associated with 

 w r

w(r) 

x 

w  

A  

l  

y 

t  
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all contours of the desired velocity and normalizing by the interstitial open area. The 

probability function can be evaluated in this manner for a number of discrete velocities 

and then numerically integrated and renormalized to smooth the approximation. 

The probability distribution of the vertical fluid velocity components that exist across 

the plane provides a weighting function that can be used to compute the area-weighted 

average vertical velocity. As with any properly normalized statistical distribution, the 

mean is given by the first-moment integral, so  w wg w dw  . The average vertical 

velocity can also be computed from the constant volumetric flow rate and the interstitial 

area across the plane as w Q A , so the volumetric flow rate must be proportional to the 

first moment of the velocity distribution  Q A wg w dw  . It is also true that the 

volumetric flow rate is defined by the spatial integral of the vertical velocity function 

 Q w r dA  , so a useful mapping has been found between two-dimensional integration 

over the spatial velocity field and integration over the velocity probability distribution. 

Because both expressions for volumetric flow rate imply full integration over respective 

domains, it must be true that 

   w r dA Awg w dw .                           (5) 

 

Now that a connection has been established between the spatial location and the 

velocity probability distribution as indices of vertical velocity magnitude, the force of 

momentum transfer acting on the CV can be written as 

   2 2

Momentum
bot top

F Aw g w dw Aw g w dw   
                     (6) 

 

by substitution of Eq. (5) in Eq. (4). Now, it is apparent that the force exerted on a fluid 

moving across a boundary is proportional to the second-moment integral of the velocity 

probability distribution. This is a result commonly obtained in the development of 

integral forms of the momentum equation for a CV (Ref. 41). Note that the interstitial 

area has not been treated as a common factor because it may vary with location in the 

bed. Derivations that treat directly the areal integral of Eq. (4) usually neglect the fact 

that the integration limit can be a function of depth in the bed. 

A more familiar form of Eq. (6) can be obtained by factoring the local area-averaged 

velocity from the integrals. This is accomplished by substituting a scaled dimensionless 

velocity defined as w w w . Because the probability density function  g w  is 

distributed in velocity, a new dimensionless function must be defined that preserves the 

relationship    g w dw h w dw , but the velocity is not a distribution function so it can 

be replaced by direct substitution. The generic result obtained after these changes for the 

force exerted on any horizontal plane of fluid is  2 2F Aw w h w dw  . Given the 
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probability density  g w  for vertical velocity, the dimensionless distribution  h w  can 

be computed as       h w g w dw dw wg w  . 

With the substitutions defined above, Eq. (6) can be written as 

2 2

Momentum
bot top

F Aw Aw    
  

              (7) 

 

where    2,z w h w dw    . Recall that all factors except density depend on location 

within the bed, and note that 1   for conditions of unperturbed uniform flow where 

2 1w   and   1h w dw  . Knowing that  
0

1h w dw


 ,   can be interpreted as the 

positive, probability-weighted square of dimensionless vertical velocity. It is possible to 

imagine distributions of vertical velocity  g w  that are skewed either above or below the 

mean velocity w , so   can have values either greater than or less than 1, respectively. 

All features of momentum transfer within a porous medium that are related to bed 

morphology have now been captured in the dimensionless integral  . This factor will be 

referred to as the “bed-geometry factor.” Classical developments either neglect this term 

and implicitly set 1   or invoke ad hoc geometric correction factors to achieve better 

agreement with empirical data. Here, peculiarities of fluid flow through a given debris 

type that impart distributed forces to the bed can be traced back to details of the 

interstitial velocity field. When stated explicitly in this manner, it is more difficult to 

assume complacently that   equals unity at all depths in every debris bed. Regardless of 

whether the distribution  h w  is computed numerically, investigated through 

microphysical experiments, or investigated parametrically, one important benefit of the 

formalism may be to focus attention on the possible separability of porosity and shape 

factor that are subsumed in the factor  . If, for example, it can be shown to a reasonable 

approximation that    a b    where  a   is a constant characteristic of the debris 

elements and  b   represents spatial scaling by the local porosity, many analytic 

methods for superposition of composite debris types can be invoked. 

A simple thought experiment that illustrates the dependence of   on porosity is to 

imagine a highly regular debris bed consisting of hard spheres of identical radii arranged 

in a body centered cubic configuration with a known packing factor (solidity) of 0.68 and 

a complementary porosity of 0.32. A formal value of   could be calculated by 

performing a volume-weighted average of vertical velocity computed by CFD throughout 

the unit cell. Now, inflate the unit cell in all directions without changing the particle size 

until the porosity is doubled to 0.64. The amount of lateral flow deflection per unit 

volume decreases and   will shift closer to the value of 1.0. Thus, there is a direct 

correlation between porosity   and geometry factor  , but the neither the shape, size, or 
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relative configuration of the debris elements have changed. To express this dependence 

explicitly, let     where   is the tortuosity and   is an empirical scaling 

parameter placed on the porosity. Other direct correlations with porosity may also be 

suitable. 

From the perspective of hydraulic flow, a complete description of a debris bed 

requires the spatial definition of three independent attributes: the porosity  , the 

tortuosity  , and the specific surface area VS . Specific surface area defines the shape, 

including aspect ratio and basic geometry, and the surface complexity of a notional 

isolated debris element. Porosity defines the proximity of the debris elements within the 

packed bed. Tortuosity defines configurational morphology including orientation of the 

elements and their relative positions. All three attributes depend on the mixed 

composition of a debris bed and all three can vary as a function of depth within the 1-D 

strata. However, local values of each attribute are sensitive to different factors. Specific 

surface area is an innate property of the local debris composition that will not change 

unless the debris are deformable under hydraulic drag or under compressive load. 

Porosity can change through both compression and compaction mechanisms that pack 

more debris mass per unit volume. Tortuosity can only be changed by compaction that 

permits relative motion like migration and rotation. Bed compression, by contrast, does 

not change the orientation of the elements with respect to the flow or their orientation 

with respect to each other. 

2.1.1.1.4 Expansion of Depth Dependencies 

Returning now to Figure 2-1 and to Eq. (7), the spatial dependencies of interstitial 

area A , laterally averaged vertical velocity w , and bed geometry   can be expanded 

about the midplane of a differential annular volume located at depth z  using the 

incremental form of Taylor’s series      f x h f x hf x     where 2h dz   and 

f   denotes the first spatial derivative of the desired function. Substituting this generic 

expression for each of the three factors, neglecting products of differentials in the 

multiplicative expansion, and simplifying leads to the relationship 

  dzA
dz

d
w

dz

wd
wAdzwA

dz

d
FMomentum 

















  22 2 .        (8) 

 

On a bed-averaged basis, mass conservation requires that the constant volumetric flow 

rate    Q A z w z  at any depth, so this result can be further simplified to obtain 

Momentum

d
F A w w dz

dz
 

 
  

 
.                       (9) 

Two features of Eq. (9) are worthy of mention. First, recall that MomentumF describes the 

net force imparted on a differential CV of fluid by changes in momentum incurred 
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between the top and bottom faces. This term of the force balance indicates that the result 

of momentum change will be manifest as a change in average vertical velocity, i.e. as a 

fluid acceleration, that is induced largely by changes in the local flow path attributes of 

porosity, tortuosity, and specific surface area. Second, substitution of the bulk volumetric 

flow rate Q  introduces an implicit average over the entire face of the bed because local 

variations will cause nonuniformities in actual volumetric flow through any given 

differential area. Later, in the development of interstitial shear force, a similar expression 

for momentum transfer is written for a constant-cross-section cylindrical conduit, and it is 

more appropriate to use the form of Eq. (8) with the assumption that   0z A   in a 

constant cross section capillary because the differential mass flow rate across any given 

sector of the flow path is not required to be constant. 

All elements of Eq. (9) except the fluid density depend implicitly on the geometry of 

the bed, and later in this treatise w  will be expressed in terms of the constant volumetric 

flow rate Q  so that local porosity becomes the fundamental parameter of interest. 

However, the present form facilitates direct comparisons with other approaches found in 

the literature. For example, if the geometry factor is assumed to be unity, the force 

imparted by net momentum change is found to be proportional to the factor  w dw dz . 

This result emphasizes the physical constraint that there can be no net momentum change 

in the fluid if there is no velocity gradient through the bed, regardless of the flow 

magnitude. When the debris has spatially uniform properties, the internal velocity 

gradient dw dz  will equal zero except at the entry and exit boundaries of the bed; and if 

the acceleration upon entry is equal in magnitude to the deceleration upon exit, there will 

be zero net momentum change across a homogeneous bed. 

Zero momentum change in the presence of a uniform velocity field should not be 

interpreted as the absence of inertial drag. The effect being examined presently is the 

local acceleration of fluid caused largely by changes in the porosity of the medium. Both 

acceleration and drag can be manifest as a change in the local fluid pressure, so they both 

must be considered in an accurate description of the internal pressure distribution. 

However, in typical experimental conditions where a fluid passes through the debris mat 

and returns to its previous velocity in a constant-cross-section conduit, any pressure 

changes caused by local acceleration and deceleration are assumed to be adequately 

represented by the analysis of viscous-shear, which is covered in Section 2.1.1.3.2, and 

the net fluid-momentum change across the bed is assigned to be zero. Inertial drag, to be 

discussed in Section 2.1.3.2, introduces a dependence of pressure-drop on the square of 

the approach velocity, and it is not uncommon to see this effect confused with the net 

momentum force given by Eq. (9), as will be illustrated in a following example. 

The sign of the term  w dw dz  in Eq. (9) is consistent with the directionality of 

forces required to produce the observed changes in fluid velocity considering that bulk 

flow must accelerate when entering the bed and decelerate when exiting because of 

corresponding decreases and increases in the flow area. These changes in velocity result 

from forces acting on the top and bottom CS of the fluid. If the average interstitial 
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vertical velocity is large compared to the approach velocity, then momentum forces 

corresponding to the positive gradient near the entrance may dominate any momentum 

effects that are distributed throughout the bed by microscopic accelerations. The same 

observation holds for the opposing momentum forces that are expressed in the negative 

velocity gradient occurring near the exit where the fluid returns to the initial bulk flow 

speed. This discussion emphasizes the importance of including velocity transition zones 

as boundary conditions when computing hydraulic forces on a debris bed, because forces 

acting on the fluid CV are transmitted to debris elements through the process of viscous 

shear, which depends on local velocity gradients. 

A heuristic derivation of the momentum force given by Sinceros and Sinceros (Ref. 

34, pp. 337 – 338) illustrates how a quadratic-velocity term can be rationalized by spatial 

averaging of velocity through the thickness of the bed. Using the present nomenclature, 

they write the momentum term for downward flow through an element of a porous 

medium having differential volume d  as  F ma d dw dt   . Substituting 

d Adz   and     dw dt w z z t w w z        , they obtain  F Aw w z dz   . 

This result is identical to Eq. (9) presuming that 1  . They next introduce a thickness-

averaged interstitial velocity computed as  1

0

L

w L w z dz   (here, the double overbar 

denotes averaging over a second spatial dimension) and substitute a dimensionless 

velocity profile defined as    *w z w z w  such that *w w w   . After these 

substitutions, the momentum force becomes  2 * *F Aw w w z dz    
 

. 

Now, the dependence of momentum forces on the square of the constant, bed-

averaged velocity has been expressed explicitly and all spatial variations are relegated to 

the dimensionless velocity profile *w . Upon integration over the entire bed thickness 

under the assumption of uniform porosity, the authors claim that these spatial variations 

yield nothing more than a dimensionless numeric coefficient. Thus, the total inertial force 

acting on water in the bed can be written as 2

iF K Aw  where iK  denotes an inertial 

force constant. In fact, the dimensionless velocity *w  will hold identical values at any 

two points located above and below the bed so that the spatial integral is zero. These 

arguments have not avoided the inherent dependence of momentum variations on the 

spatial gradient of velocity, and appear to provide only a rationalization of inertial drag 

based on the faulty premise that it arises from the net change in momentum. It is shown 

later in Section 2.1.3 that inertial drag depends on the local change in momentum caused 

by diverting flow around obstructions in the bed, and that the effect of drag is cumulative. 

The previous exercise is instructive because it illustrates several attributes of porous 

flow equations that are developed using the same rationale as Sinceros. 

 First, because the momentum term has been averaged over the entire bed 

thickness, derivations of all other force components must also be averaged 

over the entire bed. This means that estimates of incremental head loss H  

should be applied to the entire bed thickness and not to discrete layers within 
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the bed unless special care is taken to treat the inertial force constant as a 

function of depth in correspondence with properly averaged local velocities. 

One goal of the present development is to explicitly preserve depth 

dependencies of all the force components and to identify their contributions 

to the total internal pressure gradient. 

 Second, the dependence of iK  on the thickness of the bed suggests that head-

loss data from beds with similar composition but differing depths should be 

correlated in terms of head loss per unit thickness H L   to remove the 

confounding effects of total bed thickness. However, this recommendation 

may not apply well to highly compressible media where internal hydraulic 

loads are distributed across the complete mechanical system; under these 

conditions, bed averaging may not be appropriate at all. 

 Third, the derivation of a quadratic-velocity term, which will be fully 

developed in Section 2.1.3.2, does not impose any conditions on the flow 

regime. Although it is common to hear practitioners of debris-bed analysis 

refer to the quadratic term as the “turbulent” component of head-loss, the 

distributed momentum forces derived here are not contingent in any way on 

the presence of turbulence. The momentum term may be larger for higher 

velocity flows where turbulent conditions are more likely to exist, but this 

relationship is coincidental. Ahmed and Sunada (Ref. 2) provide some useful 

guidance for introducing into the analysis a turbulence decomposition of the 

total vertical flow. 

 Fourth, the approximation of Sinceros was not intended to capture spatial 

variations throughout the bed, and thus, did not consider carefully a spatial 

gradient of porosity or interstitial flow area. 

 Finally, the exercise has illustrated the application of spatial averaging 

throughout the thickness of the bed as a technique to smooth over subscale 

physical details that were not relevant to the derivation under consideration at 

the time. Exactly the same method was adopted by Ahmed and Sunada, a 

reference sometimes cited as providing theoretical “proof” that debris-bed 

head loss must contain a term that is proportional to the square of velocity. 

 

Given the present objective to develop a model of distributed hydraulic loads within a 

debris bed, it is more rigorous to retain the spatial dependence of velocity, interstitial area 

and bed complexity that is expressed in Eqs. (8) and (9). Simplifications and 

approximations can be applied at a later time as needed to best interpret available data. 

2.1.1.2 Body Forces Acting on the Fluid 

The only body force acting on the fluid contained within the differential CV shown 

in Figure 2-1 is gravity acting downward in the positive z  direction. The mass of fluid in 

the CV is      Az d A z dz A z dz     , so the body force needed for substitution 

in Eq. (3) is 

BodyF gAdz .                           (10) 
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2.1.1.3 Surface Forces Acting on the Fluid 

Surface forces acting on the differential CV shown in Figure 2-1 include both the net 

pressure exerted across the top and bottom faces of the volume and frictional forces that 

exist within the fluid wherever there are velocity gradients caused by water contact with 

debris elements on the boundary of the CV. Frictional forces arise from two primary 

mechanisms: (a) viscous shear where the fluid dissipates energy internally through 

molecular friction and (b) inertial drag where momentum is transferred to the debris 

through direct impingement along a complex CS. At a molecular level, both of these 

phenomena depend on the fine geometric structure of the debris and on the velocity field 

that arises from fluid interactions with the surface. Both occur to some degree along any 

fluid/solid interface, and because the two share the same origins in molecular kinetics, 

they cannot be separated at a fundamental level. Despite their commonality, it is 

traditional to treat viscous shear and inertial drag as separate, additive force components 

that each has unique characteristics in the velocity regimes over which they dominate. 

Thus, the surface forces needed for substitution in Eq. (1) or Eq. (3) are usually expressed 

as 

Surface Pressure Shear DragF F F F   .            (11) 

 

Formal expressions for the pressure forces and shear forces acting on the CV are 

developed in the next two sections, respectively. Inertial drag is discussed later in Section 

2.1.3.2. 

2.1.1.3.1 Pressure Forces Acting on CV Surfaces 

In general, the force imparted by total hydraulic pressure P  across a surface of area 

A  is PressureF PA  acting in a direction opposite of the surface normal; i.e. “on” or 

“against” the surface. No net forces exist across the sides of the CV shown in Figure 2-1 

for a one-dimensional debris bed, so only the influx and efflux faces of the differential 

volume need to be considered in detail. Net vertical forces (defined in the direction of 

z ) caused by hydraulic pressure on the top and bottom surfaces are thus expressed as 

Pressure top bot
F PA PA  . Expanding both the fluid pressure and the cross sectional flow 

path area by Taylor’s series about an arbitrary depth z  gives the following expression 

       
2 2 2 2

Pressure

dP dz dA dz dP dz dA dz
F P z A z P z A z

dz dz dz dz

       
            
       

, which can 

be simplified by multiplicative expansion and omission of products between differentials 

to obtain 

Pressure

d
F PA dz

dz

 
  

 
.   (12) 
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where both  P P z and  A A z . As expected the force of pressure acting on the 

differential volume acts in the direction opposite of the pressure gradient. Also, note that 

P is a face-averaged quantity that is presumed constant across the bed at a given depth. 

Minor variations caused by local acceleration in the fluid velocity have been subsumed in 

the average. 

It will be convenient to expand the derivative across the product of local pressure 

and flow area to obtain the form 

dz
dz

dP
Adz

dz

dA
PFPressure  ,            (13) 

 

which exposes the total pressure gradient for a decomposition into additive components,  

OtherDragShearTotal dz

dP

dz

dP

dz

dP

dz

dP



































.         (14) 

 

The first term on the RHS of Eq. (13) will be tracked as a component of  
Other

dzdP as 

will the body force and part of the momentum force. Contributions to the pressure 

gradient from these terms will be considered in Section 2.1.4. The linear decomposition 

of total pressure gradient is constructed for convenience to match the force 

decomposition given in Eq. (11). Even though the underlying phenomena are not fully 

separable, independent treatments of shear and drag are generally added to approximate 

the total pressure gradient. 

 

Combining Eq. (3), and Eq. (11) yields a format of the force balance that emphasizes 

ultimate interest in the total pressure gradient 

 

DragShearBodyMomentumPressure FFFFF


 . 

 

Substituting previous expressions from Eq. (13), Eq. (8), and Eq. (10) leads to  

 

 

 

2

2

2

1 1
2 .

Shear Drag

Shear Drag

Total

dA dP dw d
P A dz A w w A dz gAdz F F

dz dz dz dz

dP dw P dA d
A w dF dF w A g

dz A dz A A A dz A dz

    

 
  

   
         
   

     
           
     

                     (15) 

 

Equating respective terms of Eqs (14) and (15) establishes three relationships that must 

be solved to evaluate the total pressure gradient through an inhomogeneous debris bed 
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       (16) 

 

The pressure change in the direction of flow through complex debris is negative in almost 

all practical applications, so the explicit sign on the LHS of Eq. (16) emphasizes additive 

components of positive pressure drop through the bed. 

 

2.1.1.3.2 Shear Forces Acting Within the CV 

The classical treatment of fluid flow through the interstices of a porous medium 

generally involves adopting a well-known solution for internal flow through a cylindrical 

pipe and then applying a hydraulic scaling argument to account for the complex pathways 

or “capillaries” through which the water actually passes. The pressure gradient derived 

for flow in a cylindrical conduit is usually expressed by a differential form of the Hagen-

Poiseuille equation as 48dP dz Q R   where   is the dynamic viscosity, Q  is the 

volumetric flow rate, and R  is the radius of the conduit. One limitation of this approach 

for the present application is that the above solution is obtained under conditions of 

uniform longitudinal flow velocity (i.e., no momentum transfer). Thus, the approximate 

pressure distribution may not be fully coupled to all terms present in the force balance 

given by Eq. (3). 

A derivation of shear forces in a cylindrical capillary is presented next that 

incorporates the effects of longitudinal acceleration. This section should be viewed as a 

nested development that treats flow through a single cylindrical conduit rather than as a 

continuation of the description for bulk flow through the entire bed. The same steady-

state force balance described by Eq. (3) will apply, but the momentum, pressure and 

shear force terms will be modified to express the differential forces per unit of flow-path 

volume within the capillary. Results describing the pressure gradient for the single 

conduit will be scaled later to approximate the internal flow complexity and then 

reintroduced into the bulk flow description to arrive at a correlation for pressure loss 

through the entire debris bed. Results for the internal pressure gradient are expressed in 

terms of bed porosity and debris specific-surface area in Section 2.1.2 to obtain a 

modified version of the Ergun equation for debris-bed head loss. 

The immediate objective of this theoretical development is to derive a suitable model 

for describing pressure losses measured across composite debris beds. It will be shown 

that viscous shear is a dominant mechanism for inducing pressure drop because the fluid 

continually loses energy to friction wherever there are velocity gradients. A mental image 

of continually redirected streamlines within the bed is sufficient to illustrate that 

cumulative shear stresses must be computed by integrating over the entire volume of the 
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moving fluid. One longer-term objective is to describe the coupled interaction between 

hydraulic drag induced by interstitial flow and debris-bed response observed as a bulk 

thickness reduction. In anticipation of the importance of internal pressure gradients for 

describing local debris element behavior, gradient representations will be retained for all 

parameters that may have spatial variations through the bed. Drag occurs at the physical 

interface between the fluid and the debris elements and may be attributed to both viscous 

shear in the boundary layer and inertial impaction on the debris elements. These 

mechanisms of coupling fluid pressure drop to hydraulic drag are discussed in Section 

2.1.3. 

2.1.1.3.2.1 Derivation of the Viscous-Shear Pressure Gradient 

Following the notation of Fox and McDonald (Ref. 13), consider a stationary, 

differential, annular CV of thickness dr and length dz containing fluid that is moving 

from left to right within a cylindrical conduit of radius R  as shown in Figure 2-3. Given 

the condition of cylindrical symmetry, the fluid element experiences pressure P and shear 

stress ,r z  at radius r . The CV experiences forces left

PF and rght

PF caused by pressure 

exerted on the left and right annular faces, and it experiences shear stresses in

SF and out

SF on 

the inside and outside cylindrical surfaces as illustrated. By convention, a shear stress is 

assigned a positive or negative direction with respect to the longitudinal coordinate that is 

consistent with the radial direction of the normal vector of the surface on which the stress 

is acting. 

 
 

Figure 2-3. Annular control volume used for derivation of shear stress in a 

cylindrical capillary. 

Recall that shear is defined as the force per unit area acting in a direction 

perpendicular to the surface normal. The shear forces acting within the fluid change as a 

function of radius and distance, so the desired function ,r z  is expanded in Taylor’s series 

about the radial midpoint of the differential annular volume. For a CV of constant cross 

section as shown in Figure 2-3, the shear force acting on the inside cylindrical surface is 

r  

dr  

R
 

r  

z  

dz  

out

SF  

in

SF  

n̂  

n̂  

left

PF  rght

PF  

,, r zP   

w  
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2
2 2

in rz
S rz

dr dr
F r dz

r


 

   
     

   
and the shear force acting on the outside cylindrical 

surface is 2
2 2

out rz
S rz

dr dr
F r dz

r


 

   
     

   
. Note that the differential areas 

corresponding to these forces have been evaluated at the inside and outside radii, 

respectively. The sum of shear forces acting on the CV is 

 2 2rz
S rz rzF drdz r drdz r

r r


   

  
   

  
              (17) 

 

where products of differential factors have been neglected in the first-order 

approximation. 

Equation (16a) provides the desired form of the shear-induced pressure gradient, but 

all previous derivations assumed bulk average flow properties across an entire horizontal 

cross section of the debris bed. The present development of shear stress in a cylindrical 

capillary considers flow conditions in only one of a multitude of flow paths that exist 

within the bed. To match the spatial resolution of Eq.  (17) to the full bed, we will 

complete the analysis for a single conduit and scale the result to account for the total 

internal surface area available to induce shear within the bed. The details of hydraulic 

scaling will be explained later in Section 2.1.2. 

Consider a single cylindrical flow path having an internal velocity profile  zrw ,  

and differential area rdrdA 2 . Using the shear force from Eq.   (17), a differential 

form of (16a) can be written that will be integrated over the total flow area to preserve the 

average volumetric flow wAQ  ; i.e., 

   

   rz
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rz
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rrz
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1
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2222

.       (18) 

 

The key to subsequent manipulation of Eq. (18) is the ability to eliminate a common 

factor of differential area rdrdA 2 . It should also be noted that in general, the shear 

stress and velocity can be functions of both radius and axial location within the capillary 

as denoted by the subscripts. When comparing the form of the momentum term with 

previous results, consider Eq. (8) under the assumption that   0A z   , which would 

be true for a perfectly straight conduit of constant cross section, and might be an 

acceptable approximation if the product A  varies slowly. (In reality, impacts of the 

derivative   dzAd   are retained in another component of the pressure gradient – see Eq. 

(16c)). Equation (9) should not be used at this level of spatial resolution, because the 

volumetric flow rate is not required to be constant over a differential area, only over the 

conduit-averaged total flow area. 
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Equation (18) is usually solved for the special case of fully developed flow where the 

radial velocity profile is constant with position so that 0w z   , and body forces are 

neglected as would be reasonable for horizontal flow in a pipe. Under these 

conditions, rz  is a function of radius only and pressure is a function of position only, so 

each side of the equation must equal a common constant. Equation (18) thus simplified 

can be integrated over radial position to obtain 

2
rz

Shear

r dP

dz


 
  

 
                      (19) 

 

where the integration constant was set equal to zero to ensure that the shear stress 

remains finite at the conduit centerline as r approaches zero. 

For laminar flow within the capillary, it is true by the definition of dynamic viscosity 

  that 

rz

dw

dr
  .               (20) 

 

However, other empirical relations are available for describing radial shear for fully 

developed turbulent flow in pipes. (See Ref. 13, Section 8-5, for example). In general, 

turbulent flows will have steeper velocity gradients near the wall than those for laminar 

flow. If turbulent flow descriptions are incorporated into this derivation at a later time, 

then the presence of turbulent velocity components should also be added to the definition 

of the momentum term in the manner described by Ahmed and Sunada (Ref. 2). For now, 

proceed with the laminar flow definition by substituting Eq.  (20) in Eq. (19) and 

integrating over radius a second time to obtain 

 
22

, 1
4 Shear

R dP r
w z r

dz R

    
      

     

.            (21) 

 

This result is obtained by imposing the boundary condition that 0w  at the wall where 

the maximum radius r R  is attained. 

 

By conservation of mass, it is true over any cross section of the pipe that 

0
2

R

A
Q V dA wr dr    . In this context, Q  represents the total volumetric flow 

through a single conduit. Substituting Eq. (21) into this relation and integrating over the 

radius leads to a differential form of the Hagen-Poiseuille equation 

4

8

Shear

dP Q

dz R





 
  

 
,                (22) 
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which can be substituted back into Eq.  (21) to obtain the standard form of the parabolic 

(quadratic) radial velocity profile in a cylindrical pipe 

 
2

2

2
, 1

Q r
w r z

R R

  
   

   

.               (23) 

 

It is important to note that the velocity profile in a debris-bed capillary can retain a 

dependence on location when the flow-path diameter 2D R  is spatially dependent even 

though the above result was obtained under the assumption of constant flow-path area 

through a differential length of conduit. The assumption of constant flow area needed to 

write the differential force balance of Eq. (18) is compensated by the spatially dependent 

integration limit represented by the conduit radius, so the notational dependence on z  

will be retained for generality. It is not difficult to visualize a 2-D cylindrical conduit 

with a varying (or even undulating) radius. The implication of mapping the Eq. (23) 

velocity profile to a variable radius  zR  is that at any given cross section, the constant 

volumetric flow is spread in a parabolic velocity distribution over the local flow area. 

If the volumetric flow rate is expressed as Q wA , then Eq.  (22) explains the 

origin of the “linear” velocity term present in standard correlations of total pressure drop 

across a debris bed. The linear term is clearly related to pressure losses experienced 

because of viscous shear within the flow, as emphasized by its proportionality to the 

dynamic viscosity . Traditional expressions for the viscous-shear pressure drop can be 

obtained by applying to Eq. (22) hydraulic scaling arguments introduced later in this 

discussion. 

One remaining point of possible confusion should be addressed. Viscous shear has 

been itemized as a force acting on the surface of the fluid CV, but the previous derivation 

clearly involves integrals over the full volume of the capillary, similar to the approach 

that would be applied to estimate energy dissipation within the CV. Full volumetric 

integration is needed because viscosity couples the momentum of the entire fluid medium 

even though shear is initiated at the contact boundary. For flow in a hypothetical 

frictionless conduit, no shear can be introduced, and thus, no relative motion can exist 

between streamlines. By similar reasoning, the full velocity profile within the conduit 

must transmit the integral of internal shear to the walls where the cumulative force is 

manifest as a force on the surface of the CV. The previous derivation proceeds in reverse 

order by distributing the total viscous shear across a parabolic velocity profile. In Section 

2.1.3.1 it is demonstrated that the surface shear calculated from the fully developed 

velocity leads to the same shear-induced pressure gradient derived here. 

The preceding development of shear stress and velocity profile in a cylindrical 

conduit is a familiar presentation in most introductory fluid mechanics text books. 

However, the results were obtained under idealized conditions that clearly do not hold 

rigorously for flow through the interstitial gaps of a porous debris bed. These 

discrepancies are perhaps most evident for highly packed beds with multiple contact 

points between debris elements. The usual approach taken to accommodate geometric 
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complexity is to relate the maximum radius of the “pipe” to an equivalent hydraulic 

radius that accounts for the cumulative effects of all surfaces encountered inside of the 

debris bed. In this context, viscous shear originating in the boundary layer next to the 

debris influences the velocity profiles that develop between the elements, and thus, total 

surface area influences the cumulative degree of viscous dissipation that occurs along all 

flow paths. 

Before appealing to a hydraulic scaling argument, the following discussion proposes 

a coupled evaluation of Eq. (18) that includes both the momentum and shear forces acting 

on the fluid element. Though still limited to flow through a single 2-D cylindrical 

capillary, the refined method approximates the concurrent influence of axial velocity 

gradients. The purpose of this refinement is to introduce additional detail to the velocity 

field within the flow channel. Because viscous shear occurs wherever velocity gradients 

exist, it is hoped that the refined velocity field will provide a more accurate estimate of 

the viscosity induced pressure gradient. 

Equation (18) cannot be integrated over the cylindrical radius to isolate rz  in the 

manner illustrated earlier unless a radial velocity profile is available to define  ,w r z . 

Although the result was derived for somewhat different flow conditions, Eq. (23) 

probably captures the radial dependence to an approximation adequate for initializing an 

analytic iteration on the derivation of interstitial shear stress in the presence of axial 

velocity gradients. When substituting Eq. (23) into Eq. (18) and performing the first 

integration over radius, the principal difficulty will be encountered with the momentum 

term, so the evaluation is presented here in some detail. Throughout this derivation, it is 

assumed that the flow-path area retains a dependence on location as parameterized by 

 R z . Consider the following integration 
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Substitute this result into a complete radial integral of Eq.  (18) and continue the 

integration term by term to obtain 
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        (24) 
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where the integration constant must be set equal to zero to hold rz finite as 0r  . Note 

the reappearance of Eq. (19) and a correction term related to the spatial gradient of the 

flow path. 

Now, the definition of shear stress under laminar flow from Eq. (20) can be 

substituted to obtain a force-coupled expression for the velocity profile. Had the original 

development been performed using turbulent flow correlations, then it would be prudent 

to use the same expressions at this point of the refinement as well. Substitution of Eq. 

(20) into Eq. (24) and integration over the radius yields 
2 2 4 6 2
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4 16 18 4 Shear
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. When ,  0,r R w   so the 

integration constant is found to be 
2 2
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16 17
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. Substitution 

and simplification yields the velocity profile 
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. (25) 

 

There is no inherent reason why Eq. (25) cannot be substituted back into Eq.(18) and 

the analytic derivation iterated to obtain yet a better estimate of the force-coupled shear 

stress. One might expect the polynomial approximation to improve and eventually reach 

a theoretical limit that represents a converged solution of the differential equation, but no 

proof of this conjecture is offered at this time. Two convenient features of this analytic 

iteration are that (1) it involves only polynomial integration and (2) all dependence on the 

internal radius r collapses to a constant when either integrated over the range from 0 to 

R or evaluated at 0 or r r R  . In particular,  , 0w r R z   at all z . One unfortunate 

complication of successive iteration would be the appearance of higher derivatives like 
2 2d P d z  and 2 2d R dz . 

For now, evaluate the volumetric flow rate through the conduit,  

0
2 ,

R

A
Q V dA wr dr    to eliminate dependence on the internal radius r . Integration 

of Eq. (25) and simplification leads to a generalized form of the Hagen-Poiseuille 

equation for the pressure gradient along an individual idealized cylindrical conduit, 
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.           (26) 

 

For the sake of completeness, substitute Eq. (26) back into Eq. (25) and regroup to obtain 

a final form of the refined velocity profile, 
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  (27) 

 

Equation (26) captures the principal dependencies of the pressure gradient within a 

single flow-path conduit, and to a large extent, pressure gradients throughout the entire 

debris bed. Several features of this result deserve further description: 

 First, the first RHS term of the equation carries a quadratic dependence on 

velocity (seen explicitly when substituting Q wA ) that arises from momentum 

changes inside the bed, but this quadratic dependence is not the same as that 

included in traditional head-loss correlations in association with inertial drag. 

Note that there will be no net momentum change if there is not a spatial gradient 

to induce acceleration in the velocity field. Here, the gradient is expressed as 

dR dz denoting a spatial variation in the effective flow-path diameter. Spatial 

variations can occur exclusively at the inlet and outlet faces of the bed, or 

continuously throughout the porous medium. 

 Second, the sign of the momentum term is properly controlled by the spatial 

gradient. If the flow-path is becoming restricted in the direction of flow 

 0dR dz   then the pressure declines more rapidly because fluid velocity must 

increase. If the flow path is expanding, for example, at the exit face, then the 

pressure declines less rapidly. The simple observation that net pressure losses are 

always experienced across a debris bed rather than pressure gains suggests that 

the second term representing viscous shear dominates any small increases that 

can be attributed to gravity with increasing depth through the relatively small bed 

thickness, and that net pressure variations caused by momentum changes at the 

inlet and exit faces may be negligibly small, if not identically zero. The 

momentum term may still be necessary for describing the internal distribution of 

forces that contribute to compression and compaction, however. 

 Third, while there was no explicit dependence of flow-path area on position built 

into the differential force balance of Eq. (18) as there was earlier for the 

macroscopic bed description, there is no apparent reason why the flow-path 

radius R in this submodel cannot be treated as a function of location in the bed. 

This is an acknowledged approximation of the derivation that might be remedied 

by expanding the radial dependence of R along the z  dimension of the CV, but 

then the mechanics of solving the force-coupled equations are not at all obvious. 

 Fourth, the observation that the viscous term appears unchanged from the 

original derivation, which assumed steady flow (compare Eqs. (22) and (26)), 

suggests that the preceding iteration process has yielded a physically realistic 

equation. This fact also suggest that no mathematical coupling actually exists 

between the shear stress and the developing velocity profile under this 

approximation and that there may be a more direct solution path to the same 

result. Separability of radial shear from the axial velocity gradient further 
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rationalizes the separate treatment of inertial drag as a supplementary surface 

force that can be added to the local pressure gradient. 

 Finally, the result obtained strictly applies only to an idealized 2-D cylindrical 

flow geometry, and it must be scaled in some fashion to account for complex 

flow patterns within a porous medium. 

 

One implication of Eq. (26) may be particularly relevant to the interpretation of 

experimental data if it can be shown that a similar form applies for the total pressure 

gradient throughout the entire debris mat. The primary enterprise of most head-loss 

experiments is to measure the total pressure drop experienced across a debris bed of some 

uniform thickness; and, generally speaking, pressure taps are placed well upstream and 

downstream of the bed to avoid the velocity transition zones and ensure accurate, stable 

measurements. Considering only viscous shear, axial momentum changes, and gravity 

(added to the formula temporarily) as an example, the total pressure difference between 

measurement taps located at positions 1z  and 4z  across a bed beginning at 2z  and ending 

at 3z  can be predicted by integrating Eq. (26) along the direction of flow in the following 

manner 
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The key finding of this exercise is that the quadratic-velocity momentum term 

vanishes because the flow path areas, and thus the fluid velocities for constant volumetric 

flow, are identical at the locations of the pressure taps. Contributions of momentum 

change to a measured pressure difference are determined by conditions at the observation 

points and not by the path integral between the points. Only a few experimental studies 

have actually obtained direct measurements of pressure within the body of a relatively 

thick debris bed where this observation might be critical for proper data interpretation 

(Ref. 16). In most cases, pressure-tap data are obtained across the entire bed in a constant 

cross section apparatus under conditions of approximately constant flow, and the net 

momentum change is zero. 

Equation (28) also reminds that gravitational effects must be compensated or 

subtracted from any measurements that are intended to report pressure differences 

attributably directly to the presence of the debris bed. Gravitational pressure differences 

do not result from any characteristic of the flow or the debris because they simply 

represent the static weight of the water column between pressure transducers. Similarly, 

gravitational pressure differences do not contribute to compression or compaction of the 

bed because continuous fluid surrounds every internal structure and transmits the weight 
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of the column to adjacent fluid elements on a much finer spatial scale than that of the 

solid debris, which cannot be deformed under small pressure gradients exerted over 

distances comparable to their size. 

2.1.2 Modified Ergun Equation 

The preceding development of shear stress in an idealized cylindrical capillary 

represents a microscopic flow perspective that must be aggregated or scaled to the 

physical proportions of the debris bed in order to accurately describe pressure drops 

incurred across complex porous media. This scaling is traditionally accomplished by 

introducing a “hydraulic radius” to substitute for the dimensional parameter R  that 

preserves the “similitude” of the problem. Essentially, a spatial integration must be 

performed to add up the head-loss contributions of all complex flow paths occurring 

through the bed; but, because the internal geometry cannot be known with infinite detail 

and because the derivation of pressure gradients in a capillary holds only for simplistic 

flow configurations, an effective integration is performed using the following heuristic 

argument. 

Velocity gradients develop in interstitial flow because the viscosity of the fluid 

couples friction at the surface of the debris elements where the velocity approaches zero 

to the free-field flow where velocities are maximum. Thus, while viscous energy 

dissipation is distributed throughout the fluid volume, it is initiated at the surface of the 

conduit through which the fluid travels. As internal surfaces become more complex, 

surface friction has a greater influence on the velocity field and viscous pressure losses 

increase. This intuitive argument is captured by the following ratio, which is defined as 

the hydraulic radius; 

flow volume

wetted surface area
HR  .            (29) 

 

Choosing meaningful definitions of the “flow volume” and the “wetted surface area” 

is not as simple as it may sound for some complex media. Of course, it is traditional to 

assume that the entire free volume is flowing and that liquid moves in equal contact 

across the entire surface area of all debris elements, but there are exceptions that have 

been noted in the literature and empirical compensations that have been made to achieve 

better agreement between theory and observation. Compared to the smooth internal flows 

that were presumed in the capillary derivation, flow through a porous bed experiences 

lee-wake eddies, vortex separation at sharp boundaries, complex rotation, flow stagnation 

in dead cavities, surface tension and air occlusion of micropores, and nonuniform spatial 

accelerations. In fact, some investigators (Ref. 10) have achieved some success using 

analytic approximations of shear stress developed for external flow over regular objects 

like rods and spheres and then integrating these effects into a composite flow field using 

scaling arguments much like the hydraulic radius defined in Eq. (29). Corrections of this 

nature often appear in the published head-loss formulas as functional combinations of 

geometric properties like porosity with exponents either fractional or shifted by an integer 

compared to the classical derivations based on regular debris elements like spheres and 

cylinders. 
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For a cylindrical pipe, and hence for an idealized interstitial flow path, the hydraulic 

radius is 2 2 2HR R dz R dz R   , so 2 HR R  and 2 HdR dz dR dz . To facilitate 

the substitution of HR  in Eq. (26), first express the total interstitial flow area as 2A R  

and use the definition Q wA  to make the velocity explicit. Finally, substitute the above 

definitions to obtain 

2

2
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w w
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  
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   
.           (30) 

 

 Recall that w denotes the interstitial vertical flow velocity averaged over lateral 

variations in the one-dimensional bed and that Q is the bulk volumetric flow velocity. 

This is a more significant approximation than it might first appear. Throughout the 

previous section, the microscopic perspective of flow in a single capillary permitted the 

interpretation of Q as the “local” volumetric flow that was then distributed over the local 

flow area in a parabolic velocity distribution. Now, the perspective has shifted back to the 

attributes of the aggregate bed, and it is implicitly assumed that every representative 

conduit carries the same bulk flow as the bed average. There is no fundamental reason 

why this should be strictly true, which suggests a possible future refinement from a single 

average conduit to a distribution of local flow conditions. 

Inside of a porous debris bed, the volume fraction that is open for water to pass 

through is defined by the porosity  . The complement of porosity, or the solidity  1  , 

is the volume fraction of the bed occupied by debris elements. The total surface inside of 

the bed that is exposed to wetting is characterized by the specific surface area VS , which 

is defined as the debris surface area per unit of solid debris volume with units of 

   2 3 1m m m . For example, for a spherical particle of diameter PD , 

    
2 3

4 2 4 3 2 6V P P PS D D D   . Given these conventions, the hydraulic radius 

of a complex debris bed can be expressed by considering a typical unit volume  ; 

   
water volume

debris area 1 1
H

V V

R
S S

 

 


  

  
         (31) 

 

where both   and VS  are functions of depth through their dependence on fiber and 

particulate mass distributions that may exist in a nonuniform debris bed. Remember that 

this definition of hydraulic radius assumes perfectly uniform contact between the 

continuously moving fluid and the debris-element surfaces. 

Through the definition of porosity is also obtained a relationship between the 

interstitial flow area and the approach area of the screen AA dz A dz , or AA A ; and 

because the volumetric flow rate is constant through the bed and upon approach, 

A AwA Q w A  , or A A Aw A w A  , which relates the interstitial and approach velocities 

as Aw w  . Head-loss formulas are often expressed in terms of the approach velocity 
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because it can either be measured directly or it can be derived from a measured 

volumetric flow rate using a known flow area upstream of the debris bed. 

Before substituting these definitions of hydraulic radius and approach velocity in Eq. 

(30), evaluate the spatial derivative of the hydraulic radius to obtain 
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. Now, substitution and simplification offers 

the final result that 
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.(32) 

 

The second term of Eq. (32) has been factored to facilitate comparisons with 

traditional head-loss formulas. For example, Ergun (Ref. 12) reports a composite formula 

of the form 
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where L  is the bed thickness, P  is the positive pressure reduction from the top of the 

bed to the bottom, cg  is the gravitational force constant ( 1cg   when all other quantities 

are specified in SI units), 6P VD S  is an effective spherical particle diameter, mU  is the 

approach velocity measured at the average pressure, and mG U  is the mass flux. 

Making minor substitutions for cg , PD  and G  in Eq. (33) brings the two equations 

closer in form; i.e., 
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but it does not resolve several important differences. 

The following comparison discusses many of the differences between Eqs. (32) and 

(34): 

 Ergun developed much of his work to describe gas flow through porous 

beds. This may explain why there is a measurement of bulk flow mU  taken at the 

“average” pressure and why the contribution of gravity was not important for 

obtaining successful correlations with data. For liquid flow, it will be assumed 

that m AU w . It should also be noted that much of Ergun’s data was obtained in 

regimes of industrial mass flow rate that are much higher than those needed to 

study typical water penetration of ECCS-sump-screen debris beds. Also, it is 

noted that gas viscosity increases with temperature in contrast to liquid viscosity. 
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Presumably the data were interpreted using accurate evaluations of the fluid 

properties. 

 The Ergun equation contains an increased factor of approximately 2 in the 

coefficient of the first term that may have arisen for several reasons:  (a) perhaps 

there is a difference in the approximations used for flow-area integration in the 

fundamental differential equations, (b) perhaps different definitions of hydraulic 

radius were adopted, (c) perhaps the debris elements largely studied by Ergun do 

not fit the assumption imposed by this derivation of full contact between the solid 

debris surface and the moving fluid. While this difference may appear minor, it 

translates directly into a factor of 2 discrepancy between any material properties 

that are inferred from pressure-loss data using the two formulas. Observations are 

offered in Section 2.1.3.2 to explain why the coefficient derived for Eq. (32) may 

underestimate the effects of viscous head loss compared to Ergun’s 

measurements. 

 The most obvious differences between the two formulas lie in the quadratic-

velocity (second) terms. First, it is important to understand that the two terms are 

not intended to describe the same phenomena. Equation (32) explicitly enforces 

the requirement that a spatial gradient be present in order to experience any 

acceleration that can induce a change in momentum giving rise to second-order 

forces. Equation (34) neglects the possibility of net acceleration across the bed 

presumably because of the constant-cross section, constant-volumetric-flow 

experimental configuration. The quadratic term in the Ergun equation arises from 

high-velocity inertial drag that will be discussed in Section 2.1.3.2. A comparison 

of results to Eq. (34) will be offered at that time. 

 In some sense, the Ergun formula predicts the average pressure gradient 

across the entire bed because the correlation is expressed in terms of the total 

pressure drop divided by the total bed thickness. Equation (32) will be 

manipulated to imitate this averaging process and perhaps resolve some of the 

largest disparities between the two formulas. 

 Upon integration of Eq. (32) over the distance between pressure taps to 

predict the total head loss, it is found that the momentum term vanishes because 

the material properties of   and VS  return to their respective original values of 1 

and 0 after the fluid passes through the bed. This behavior of Eq. (32) when 

compared to the proven success of the Ergun equation suggests that inertial drag 

can be an important alternative source of quadratic-velocity dependence in the 

pressure gradient for some flow regimes. 

 

 

 

 



 

37 

 

Integration of Eq. (32) (with gravity included for comparison) between pressure taps 

located at topz  and botz  across the bed of thickness L  leaves a total pressure drop of 
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(Recall that the z  coordinate is directed downward for this derivation). If the material 

properties are constant through the bed of thickness L  and 1  elsewhere, then 
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and the bed-averaged pressure drop is 
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Typically, pressure transducers tapped on opposite sides of a debris bed will be 

compensated to read zero differential pressure under zero flow, thus accounting for the 

static pressure difference between them. In this case, the gravitational term is not needed 

to discuss flow-induced pressure changes across the bed. Comparison of the first terms 

appearing in Eqs. (34) and (37) reveals a factor of ~2 discrepancy between the present 

derivation and the traditional Ergun formulation. 

Other investigators have used empirical evidence and semitheoretical arguments to 

optimize the first term of Eq. (32) for better agreement with particular filter media. For 

example, Davies (Ref. 10) reports for long cylindrical filter elements (like fiberglass) a 

linear-velocity pressure gradient of the form    
1.5 2 23.5 1 1 57 1 V AS w     
 

. This 

form represents a significant departure from the classical Ergun equation in its 

dependence on porosity, but it provides an optimized description for data taken in a filter 

media very similar to fiberglass insulation debris. For this reason, the Davies 

representation of linear-velocity pressure gradients was adopted by Rao for use in Ref. 

43. With a predominance of high particulate-to-fiber ratios in the STP accident space 

causing the most concern for potential strainer head loss, and extremely low approach 

velocities, the standard factorization that is more typical of granular beds will be carried 

forward here. 

2.1.3 Hydraulic Drag 

Comparisons of bed-averaged pressure loss formulas obtained thus far to the classic 

Ergun equation have noted the absence of a term that is proportional to the square of the 

approach velocity, the so-called “quadratic head-loss” effect. This term is often included 

in a semitheoretical manner to account for the dominance of inertial drag in high-velocity 

flow regimes, and this is why the list of surface forces acting on a fluid CV itemized in 
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Section 2.1.1.3 included the possibility of momentum transfer by direct flow 

impingement on debris elements. This effect is categorized as a surface force because no 

fluid actually crosses the CS; a mental image of molecular impingement and redirection 

is helpful to understand the concept of momentum transfer from the fluid to the solid 

debris. While it might be true that all migrating fluid moves parallel to the surface of the 

debris under the approximation of zero-velocity surface flow in a well-developed 

boundary layer, in many practical conditions, fluid that is diverted around a debris 

element experiences a significant change in momentum that is transferred to the obstacle 

through a process described here as inertial drag. Precise calculations of momentum 

exchange cannot be made without detailed information about the velocity field similar to 

the information that is rolled up in the  flow-diversion factor, so the extra term is “added 

on” to the correlation to accommodate behavior that is observed in the limit of high-

velocity flow. Earlier, an additive force balance was defined to anticipate introduction of 

various phenomena, but the definitions of each component are somewhat arbitrary and do 

not follow from first principles. 

It will be shown in Section 2.1.3.1 that viscous shear also imparts drag forces on the 

internal surfaces of the fluid CV that are proportional to the product of dynamic viscosity 

and local average velocity w , but inertial drag discussed in Section 2.1.3.2 imparts 

forces that are proportional to the product of the fluid density and the local velocity 

squared 2w . Satisfactory predictions of head-loss can be obtained for many debris beds 

by considering only the viscous effects and by neglecting quadratically dependent inertial 

drag entirely. The success of this approximation indicates that forces induced by inertial 

momentum transfer will seldom compete with viscous shear in the flow regimes 

applicable to sump-screen blockage by composite debris beds. Because high-velocity 

flow regimes are rarely encountered in sump-screen head-loss applications, the presence 

of a quadratic pressure gradient term that is not tightly integrated into the theoretical 

derivation can cause difficulties when interpreting data that falls in the transition between 

velocity regimes. This difficulty has lead a number of investigators to propose geometric 

corrections to the coefficients of both the linear and the quadratic-velocity terms in order 

to achieve better agreement with specific compositions and arrangements of debris-bed 

elements in the velocity ranges of interest. 

Experimentalists who have experience fitting quadratic models to measured data 

often complain about ill-behaved extrapolations and the relatively small values assigned 

to the quadratic coefficients, so it may be that observations of nonlinear pressure drop 

with increasing flow velocity are more likely to be caused by bed compression and 

compaction that reduce porosity rather than by the effects of inertial drag. However, if 

head-loss data are collected at higher velocities for the sole purpose of determining 

hydraulic resistance properties of various debris materials, then it is important that a 

quadratic correlation like Eq. (34) be implemented. 

In the following two sections are described two aspects of hydraulic drag. First, in 

Section 2.1.3.1 is verified a component of the drag force that is already inherent to 

viscous coupling of shear induced near the debris surface. Then, a derivation of the 

classic quadratic-velocity inertial drag component is presented in Section 2.1.3.2. 
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Because the quadratic term is simply added on to the formula to compensate for observed 

pressure-loss trends at high velocity rather than derived as a member of the coupled force 

balance, it will become apparent that some duplication exists between the two sources of 

drag. Each represents a different extreme of flow velocity, and some refinements may be 

needed to smooth the transition between the competing linear and quadratic terms. 

2.1.3.1 Drag Imparted by Fluid Shear 

Shear work is performed throughout the body of flowing water because velocity 

gradients in the flow require that fluid layers “slip” past one another, expending 

thermodynamic pressure to overcome the viscous effects of molecular friction. Viscous 

coupling conveys all of this friction to the surface of the debris in a manner that can exert 

drag capable of moving debris elements or causing compression within the bed. This fact 

was incorporated in the previous derivation of shear-induced pressure gradient by 

evaluating velocities and shear stress at the full capillary radius R  before scaling to the 

hydraulic equivalent surface area. This section confirms that drag imparted on debris 

elements is equal in magnitude and opposite in direction to the viscous shear imparted on 

a fluid element. 

On a microscopic scale, the process of momentum transfer between a moving fluid 

and the intricate surface of a debris element involves complex phenomena and practically 

infinite geometric detail. However, it is usually sufficient to assume the existence of a 

boundary layer where fluid in contact with the solid surface moves with a velocity that is 

essentially zero compared with fluid only a few molecular layers deeper into the free 

stream. This zero-velocity boundary condition was imposed in the derivation of the radial 

velocity profile inside of a cylindrical capillary. While the fluid velocity may approach 

zero at the debris surface, the velocity gradient is not required to equal zero; and because 

the shear stress  w r    , the gradient can be evaluated at the wall to estimate the 

shear stress that fluid moving in the boundary layer imparts to the debris surface. 

The classical parabolic radial velocity distribution in a cylindrical pipe of radius R  

carrying volumetric flow Q  was given by Eq. (23). The radial derivative of that 

distribution is 
4

4dw Q
r

dr R
  , and when the derivative is evaluated at the maximum 

radius and substituted into the shear stress distribution, the resulting formula is 

 

 
3

4Q
r R

R





   .            (38) 

 

Recall that this is the shear stress imposed on fluid in the CV near the boundary, so the 

coupled force on the wall acts in the opposite direction, i.e., in the direction of fluid 

motion. The drag force acting on a differential length of the capillary is Drag walldF dA    

where 2walldA R dz . Substituting flowA AwQ   and expanding the area in terms of 

R  leads to the final result for the differential force acting on the debris in the direction of 

flow, 
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 
8

.Drag AdF w dz
z





             (39) 

 

The differential pressure loss induced on the fluid from internal drag is then obtained by 

averaging the drag force over the flow area and scaling a single capillary by the effective 

hydraulic radius to obtain 

 

 
AV

Drag

wS
dz

dP




 2
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2

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






 . 

 

As expected, this is the same result as obtained for the first term of the pressure gradient 

from shear losses. This exercise confirms that the original derivation of shear loss was 

properly evaluated by applying the full effect of viscous coupling at the surface of the 

capillary. 

 

This same procedure can be generalized using the refined velocity distribution given 

by Eq. (27). The formula can be differentiated with respect to r and evaluated at r R  to 

obtain 
2

2 4 3

4 4

3R

dw Q dR Q

dr R dz R



 
  . The corresponding differential drag needed to predict 

local bed response is found, after substitution and simplification, to be 

 

 

   
2

2

32 8

3

H H
Drag A A

R z dR
dF w w dz

z dz z

 
 

 

 
    

 
        (40) 

 

Further substitutions can be made in the first term of the RHS of Eq. (40) to express 

the hydraulic radius HR  in terms of the porosity and specific surface area, but it is 

important to note that this term will only be nonzero for spatial intervals where a net 

gradient exists in the debris properties. Across the entire bed there will be no net 

contribution from the first term to the cumulative drag force, so the first term may be 

relevant only for assessing local effects on debris elements that can migrate. In other 

words, the first term may be important for describing compaction phenomena and not for 

uniform mechanical compression. If Eq. (40) is scaled and averaged over the flow area, 

the shear-induced pressure gradient of Eq. (32) is reproduced as expected. 

The viscous component of drag acting on the debris elements is initiated by fluid 

moving in the boundary layer very close to the debris surface, but it fully couples all 

viscous shear occurring throughout the moving fluid. Viscous drag may only play an 

important role in the Stokes-flow regime where viscosity dominates inertial flow effects, 

i.e., very low Reynolds numbers. A full development of Stokes’ law for the drag force 

exerted by external flow on a spherical particle is given at the end of Chapter 3 in Ref. 15 

The approach implemented here to derive the differential drag for internal flow in a 

debris bed is similar. In the next section, the drag force for inertia-dominated flow is 
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explored to explain the origin of the quadratic-velocity term present in the Ergun 

equation. 

2.1.3.2 Drag Imparted by Inertial Transfer 

Hinds (Ref. 15) presents the following derivation of Newton’s resistance law, which 

is the fundamental basis for the quadratic-velocity term in the Ergun head-loss 

correlation. Newton derived a general equation for the force resisting the motion of a 

body through a fluid as part of a ballistic evaluation of cannonball trajectories. He 

reasoned that the drag imparted to the object must be proportional to the acceleration of 

the fluid that has to be pushed aside as the body passes through. For a spherical body 

moving through a stationary fluid at constant velocity w , or equivalently, a fluid moving 

around a stationary sphere, the rate of mass displacement equals the cross sectional area 

of the body times the velocity times the density within the displaced volume, i.e., 

2

4
m d w


 . The acceleration of the displaced fluid is proportional to the relative 

velocity between the body and the fluid so 2 2change of momentum

unit of time 4
mw d w


  . 

Thus, the force required to move the body through the medium, or equivalently, the drag 

exerted on the body as the fluid passes around it is given by 2 2

4
DF K d w


  where K  is 

a constant of proportionality. Experimental investigation shows that the proportionality 

between drag force and momentum change is only approximately constant for spherical-

particle Reynolds numbers 1000Re  , so a more general convention is adopted by 

introducing a drag coefficient that can be correlated as a function of Re. Thus, the 

standard convention is 

 

  2 21

2 4
D DF C Re d w


 .             (41) 

 

Discussions of external flow around objects generally assume that the relevant value 

of Reynolds number is defined by the characteristic diameter of the particle. This is true 

of information presented in this section as well, but prior to this discussion of drag, the 

physical model being developed was supported by a mental image of internal flow within 

a cylindrical capillary where the characteristic dimension was assumed to be the 

hydraulic radius / 2HR R . It is helpful to have a relationship between the two 

definitions of Reynolds number applying to each of these cases that is stated in terms of 

the macroscopic debris-bed properties. For internal flow within an idealized channel, 

   1 1

A A
f H

V V

w w
Re wR

S S

  

    
  

 
.          (42) 
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For a spherical particle, 6V pS D , so 
 6 1

p A

f

D w
Re



 



. Thus, Reynolds number for a 

spherical particle can be written as 
 1

6A
p p f

w
Re D Re



 


  . This result implies that 

p fRe Re  for beds of spherical particles with 0.86  . When 0.75  , the particle 

Reynolds number is twice as large as that for the flow, and when 0.92  , the flow 

Reynolds number is two times larger than that for the particle. For typical fiber-bed 

porosities in the range of 0.9  , the flow Reynolds number is ~1.5 times larger than the 

particle Reynolds number. 

At a temperature of 60ºC, water viscosity and density are 44.664 10 Pa-s and 983.2 

kg/m
3
, respectively (Ref 14). Assuming a nominal 10-μm diameter particle (similar to the 

diameter of fiberglass strands), and a bed porosity of 0.9 leads to  23.4s mp ARe w . 

Typical approach velocities for sump screens range from 31.5 10  to 23.05 10  m/s 

(0.005 to 0.1 ft/s), so expected Reynolds numbers for the debris elements range from 
23.5 10  to 0.71. Flow Reynolds numbers for the same conditions range from 

25.25 10  to 1.07 . For the convenience of reading Ergun’s paper (Ref. 12), these ranges 

convert to 0.3 6.4
1

ReN

-
   where Re p AN D w  . 

Equation (41) was derived based solely on the inertia of the displaced fluid so it will 

only be completely valid for high Reynolds numbers where inertial forces dominate 

viscous forces. It was also derived assuming complete normal incidence of the fluid 

across the face of the object, as one would imagine for a flat-faced cylindrical billet rather 

than for a sphere. This assumption maximizes the lateral fluid acceleration needed to 

achieve the displacement volume created by relative motion of the body through the 

velocity field. Common experience with projectiles suggests that optimized shapes can be 

designed to minimize drag for the same maximum cross sectional area. Also, the 

fundamental concept of a single object moving through an external flow is immediately 

challenged by the complex internal flow paths of a composite debris bed. For these 

reasons, it is not difficult to understand why debris/filter shape factors and complicated 

correlations have been developed to improve the performance of Eq. (41) for describing 

drag effects through porous beds. 

Figure 2-4 illustrates the empirical behavior of the drag coefficient for several 

standard debris-element geometries over a wide range of Reynolds number. In the 

Stokes-flow limit where 1pRe  , 24D p
C Re  for flow over a single spherical particle. 

A numerical check of Figure 2-4 reveals an empirical fit of 29.44 /D pC Re for a bed of 

spherical objects. The 23% increase in the numerical coefficient could easily be 

accommodated by explicitly factoring the porosity ratio and the specific surface area 

from the trend in the manner of Eq. (32). The approximately constant value of drag in the 

range 000,200100  Re  for cylindrical objects reaffirms the linear addition of viscous 
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shear and inertial drag. The data support a relatively small but stable base of inertial drag 

to which viscous shear becomes an additive effect at lower Re.  

           

        

 

Figure 2-4. Drag coefficients for spheres, disks, and cylinders:  pA   area of 

particle projected on plane normal to direction of motion; DC  overall drag 

coefficient, dimensionless; pD  diameter of particle; dF drag or resistance 

to motion of body in fluid; Re Reynolds number, dimensionless; 

u relative velocity between particle and main body of fluid;   fluid 

viscosity; and   fluid density. (Reprinted from Ref. 24. Copyright 1940 

American Chemical Society). 

Equation (41) describes the inertial drag force acting across individual debris 

elements contained within the bed. It is intuitively obvious that drag must be exerted 

along the surface of the debris; so many similarities arise with the previous treatment of 

viscous shear coupled to the walls of a flow channel. It was shown in Section 2.1.3.1 how 

viscous shear imparts a component of drag to the surface, so simple addition of an inertial 

drag term will duplicate this component. Nevertheless, the standard treatment is to define 

an inertia-induced drag stress analogous to Eq. (19) such that 

 

2

D
Drag

Dragp

F R dP

A dz


 
   

 
.              (43) 
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One important question that immediately arises is, what area pA  should be used to 

distribute the drag force? Viscous shear was implicitly assumed through the application 

of hydraulic scaling factors to affect the entire surface of the debris. This might be 

reasonable for low-velocity flow that follows laminar streamlines around the contours of 

the obstacles, but for higher velocities approaching a turbulence transition, the flow will 

separate from the surface creating lee-wake eddies that do not feel the effects of drag. 

Figure 2-4 illustrates that this flow transition, marked by the flattening drag coefficients, 

does not occur until pRe approaches or exceeds a value of 100 depending on the shape of 

the debris elements, so for now, it is reasonable to assume that inertial drag can also be 

distributed across the entire debris surface for the flow regimes of interest and introduce 

an empirical fitting constant to determine the best value supported by data. 

Reversing the sign of Eq. (41) to account for inertial drag acting on a fluid element, 

substitution into Eq. (43), and solving for the pressure gradient leads to the relation  

 

  2
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1 1

8
D V A

Drag

dP
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dz






   
    
   

           (44) 

 

where Eq. (31) was substituted for the hydraulic radius and the local flow velocity was 

expressed in terms of the approach velocity. By definition, this component of pressure 

drop is fully coupled to the debris elements and will contribute directly to bed 

compression. Comparison of this result to the second term of the Ergun correlation recast 

as Eq. (34) shows the form to be similar. 

Only the choice of the drag coefficient in Eq. (44) remains to be rationalized. The 

Ergun coefficient for the quadratic term has a numeric value of approximately 0.3, which 

was derived from statistical fits to a wide variety of data for gas flow through packed 

beds at much higher pRe  than are typically of interest for sump-screen blockage. The 

corresponding value of the drag coefficient  2.33DC   would lie at an approximate 

pRe of 40 for spherical elements and irregular cylindrical elements (see Figure 2-4). This 

range exceeds the Reynolds numbers expected for sump-screen, so fits of the quadratic 

coefficient to sump-screen head-loss data should yield even smaller numeric values than 

the Ergun recommendation. 

It is interesting to note that if the standard Stokes-limit drag coefficient of 

24 /DC Re  for spherical particles is substituted in Eq. (44) using the hydraulic radius as 

the length scale for Re, then the pressure gradient induced by drag in the viscous regime 

is estimated to be 
 

2

2

3

1
3 V A

Drag

dP
S w

dz






 
  
 

. This is only slightly different from the 

first-term magnitude of Eq. (32) that was derived for viscous shear acting throughout the 

flow. The exact numeric coefficient of 3 arises in the derivation of Stokes’ drag law from 

the analytic treatment of normal pressure forces acting on the surface of a sphere. In the 

ideal cylindrical capillary, surface-normal pressure forces were not considered because 
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the velocity field is perfectly tangential, but this effect certainly is present in a complex 

debris bed with internal rotational flow patterns, so the coefficient of 2 derived for Eq. 

(32) may underestimate the total effect of viscous dissipation in a debris bed. However, 

the initial substitution is only valid when p fRe Re , so the porosity for a realistic bed 

could just as easily have a value where the coefficient of 3 overestimates viscous 

dissipation. 

The relationship elucidated above between the pressure gradients induced by viscous 

dissipation and by inertial transfer, or drag, suggests that a generic form of the drag 

coefficient like      RehReRefReCD   can be substituted in Eq. (44) to satisfy both 

limits of physical behavior. In this expression,  f Re  and  Reh  are functions that 

control the relative contributions of viscosity and impaction to the total pressure gradient 

under a given flow condition. The proposed substitution leads to a simple summation of 

the gradients expressed in Eqs. (32) and (44) with the undetermined functions  f Re  

and  Reh  serving as respective coefficients. The simplest and most common choice is to 

set  f Re  and  Reh  equal to constants that can be determined by correlation with data. 

The accuracy of this approach depends on the range of Re over which the correlation is 

performed. Low Re data will lead to a very small value of h and a characteristic value of 

f. High Re will influence the relative magnitude of the coefficients in the opposite 

manner. 

Rao further emphasized the potential effect of the quadratic drag term (Ref. 43) by 

adopting the Ergun coefficients and explicitly evaluating a partial denominator at the 

minimum porosity of interest (Ref. 31). Reasoning that porosities may range from 0.65 to 

1.0 for beds composed primarily of fiberglass, a factor of 2   was explicitly evaluated at 

the minimum of the range  2 20.65 2.3     and applied to the recommended scalar 

coefficient to obtain an inertial drag term of the form 21
0.66 V A

drag

dP
S w

dz






   
   

   
. 

This term, presented as part of the NUREG/CR-6224 head-loss correlation, has caused 

much controversy because by visual appearance it does not conform to the classical 

derivation presented above. However, by explicitly evaluating the minimum expected 

porosity, the equation does bound the functional behavior of the Ergun formula over the 

range of 0.65 1.0.   Difficulties may arise when using the cited correlation to infer 

debris-bed properties from high-velocity head-loss data, because the porosity has already 

been artificially suppressed, but this is seldom a concern when testing in the velocity 

range of expected sump-screen applications because the inertial head-loss contribution is 

very small anyway. 

In the range of very low velocities and correspondingly low Re  appropriate for 

modern recirculation sump strainers, it will be sufficient to admit an unknown constant 

fitting coefficient,   hReh  , for the inertial pressure loss term. Figure 2-4 suggests a 

more accurate correction for the drag coefficient of the viscous term. In the viscous 

regime for 1Re , the drag coefficient should trend as a straight line on a log-log plot. 
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This behavior indicates an underlying power law of the form mbxy  , where m is the 

slope in log-log space and b is the log-log intercept where 0log10 Re , or 1Re . (The 

form mbxy   expands to 10 10 10log log logy m x b  , which explains the linear plot on 

log-log axes). Thus, the viscous term of the drag coefficient should obey 

  mbReReRef   and thus a suitable coefficient would be   1 mbReRef .  

Substitution of the generic drag coefficient      RehReRefReCD   into Eq. (44) 

using the coefficients defined above and the hydraulic radius as the characteristic length 

of Reynolds number, 
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      (45) 

 

where the first term of Eq. (45) is analogous to the first term of Eq. (32). From Figure 

2-4, the log-log intercept for various shapes of debris element is in the range of 

3010  b , so the leading constant should have a value in the range of 1 to 4, spanning 

the theoretical values of 2 - 3. If the theory of viscous pressure drop is perfectly accurate, 

the exponent fitting parameter will have a value near 1m , meaning that no correction 

is needed. Similarly, if the theory for inertial drag is perfectly accurate then the fitting 

parameter will have a value near 1h . Note that the correction factor 

  1 mbReRef should be applied to all terms of Eq. (32) for completeness. 

 

At this point it is worth remembering that porosity and specific surface area are 

intended to be functions of spatial location in the debris bed. This means that the local 

Reynolds number is also a function of z . However, the fitting parameters b and m apply 

across the entire range of local flow conditions and should be relatively robust over a 

wide range of debris combinations. Note that Figure 2-4 presents variations in drag for 

particular shapes of debris elements as a function of their respective particle Reynolds 

number definitions. Analogous plots using the hydraulic radius should exhibit less 

variation because it subsumes all conditions of porosity and specific surface area. 

 

2.1.4 Remaining Pressure Gradient Contributions 

Recall that in Section 2.1.1.3.1 all terms of the force balance acting on a CV of water 

were grouped into additive components of the total pressure gradient. Viscous shear and 

inertial drag have been treated thus far, but extra terms grouped as  
Other

dzdP remain for 

consideration. Aside from the gravity force, which leads to increasing static pressure in a 

vertical bed, these terms arise from the initial presumption that spatial gradients exist in 

all physical variables. Equation (16c) can be scaled from a single capillary to a full debris 

bed using substitutions for flow area and hydraulic radius presented above. The 

simplified result is 
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Again, the net pressure change across the entire bed caused by internal gradients is zero 

because the flow attains the same conditions above and below the bed. Static pressure 

increases through the bed, but does not represent a characteristic head-loss induced by the 

debris. Static pressure difference is usually discarded during measurement by setting a 

zero differential between pressure transducers under zero flow with no debris present. 

 

The most surprising feature of Eq. (46) is the explicit dependence on absolute local 

pressure  zP . Formulas for net pressure change across a debris bed always treat pressure 

difference in a relative sense that is presumed to be constant regardless of the absolute 

inlet and outlet pressures. This term arises from the presumption that a spatial pressure 

gradient exists in combination with a changing local flow area. It should not be 

unexpected that solving for the internal profile of pressure gradient requires that the 

internal pressure distribution be known as well. For a configuration with fully specified 

spatial gradients of porosity and specific surface area, all coefficients could be quantified 

and the remaining differential equation for pressure could be solved by integration. 

Although pressure measurements typically reference upper and lower transducers to a 

common zero reference, it should not be difficult to calibrate one of the units to read 

absolute local pressure. Absolute inlet and outlet pressure measurements may be needed 

for future work that estimates bed compression and compaction effects using internal 

pressure gradient as a local driving force. 

 

2.1.5 Summary of Head-Loss Gradient Formulas 

Much has been learned about the origins of the linear and quadratic head-loss terms 

that appear in traditional correlations. The linear term represents viscous dissipation in 

the interstitial flow, and the quadratic term represents direct inertial transfer from the 

fluid to the debris elements. However, a satisfactory joint derivation of the two limiting 

behaviors has not been provided. This should not be too disconcerting given the 

somewhat broad abstraction of hydraulic similitude that was used to bridge the gap 

between theoretical formulas developed for ideal flow paths and the physical behavior of 

complex composite debris beds. It is more valuable to note that two theoretical limits are 

available to constrain empirical correlations that may be developed to describe a wide 

range of flow velocities and to adopt the standard approximation that total pressure drop 

can be expressed as a linear combination of several effects. 
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Several relationships that have been used frequently are repeated here for convenient 

reference: 

Bulk Flow    2Aw
Q wA R


  ;                  (47a) 

Hydraulic Radius               
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;                 (47b) 

Reynolds Number  
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.                  (47c) 

The total pressure gradient at any location z was expressed in Eq. (14) as 
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Components of the total positive pressure drop can be summarized by collecting Eqs. 

(32), (44), and (46): 
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Most applications involving reduction of pressure measurements taken across a debris 

bed will require integrated versions of the pressure drop components. For consistency, 

each component of positive pressure drop is defined as   PPP topbot  . The following 

condensed form assumes that flow conditions of velocity, porosity, and specific surface 

area are identical at the locations of the pressure taps: 
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3 Conclusion 

Significant work remains to couple formulas derived here for differential pressure 

gradient to a continuum mechanics model of fiber bed compression, but the theory is now 

in place to support a description of nonuniform bed response. More challenging still is 

the development of a predictive model for bed compaction. As defined at the outset of 

this treatise, compaction involves the relative motion of individual debris elements. A 

complete description of controlling phenomena would include filtration mechanisms such 

as van der Waals attraction, momentum driven impaction, geometric sieving, migration, 

and eventual shedding from the debris bed. Some important steps have recently been 

taken to describe the macroscopic behavior of composite debris beds that will provide 

bounding constraints on microscopic predictive models (Ref. 46), but the 

micromechanics of bed response remain open to a fundamental description of motion 

induced by local pressure differences.  

 

The greater value of a theoretical review of familiar topics like debris-bed head loss is 

often found in the fresh interpretation of data that is offered rather than in a 

fundamentally new predictive capability. This exercise has brought a renewed emphasis 

on the configurational aspects of bed formation, both from the perspective of composite 

structure and from the perspective of individual debris elements. New correlation groups 

have been proposed that offer a more explicit representation of surface roughness, 

tortuosity, and porosity as functions of location in the bed. These groups also support a 

new perspective of the relative importance between linear and quadratic terms of the 

classic head-loss equation as they pertain to the specific flow conditions and debris 

compositions experienced by modern sump strainers. As testing for the STP risk-

informed closure project proceeds, it is hoped that this theory will be exercised and 

expanded to provide robust correlations for a wide parameter space of temperature, flow 

rate, particulate-to-fiber ratio, and fiber debris preparation. 
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